Mnohobunkový organizmus: Rozdiel medzi revíziami

z Wikipédie, slobodnej encyklopédie
Smazaný obsah Přidaný obsah
YFdyh-bot (diskusia | príspevky)
YFdyh-bot (diskusia | príspevky)
Riadok 125: Riadok 125:
[[sl:Mnogoceličar]]
[[sl:Mnogoceličar]]
[[sv:Flercellig organism]]
[[sv:Flercellig organism]]
[[th:สิ่งมีชีวิตหลายเซลล์]]
[[uk:Багатоклітинні організми]]
[[uk:Багатоклітинні організми]]
[[ur:کثیر خلوی]]
[[ur:کثیر خلوی]]

Verzia z 04:51, 28. júl 2012

Medzibunková hmota (extracelulárna matrix) slúžiaca na vzájomnú komunikáciu medzi bunkami mnohobunkového organizmu
Trichoplax adherens, jeden z najjednoduchších mnohobunkových živočíchov

Mnohobunkový organizmus je živý organizmus, ktorý sa skladá z viacerých, navzájom spolupracujúcich buniek. Tieto bunky spravidla nie sú všetky rovnaké, špecializujú sa na určité funkcie a tak dávajú vznik tkanivám alebo pletivám, z ktorých sa vytvárajú orgány a orgánové sústavy.

Mnohobunkové organizmy a jednobunkové organizmy s jadrom – prvoky majú veľmi podobnú stavbu buniek. Preto sa predpokladá, že mnohobunkovce sa vyvinuli z prvokov a to konkrétne z nálevníkov. Niektoré kmene nálevníkov totiž javia príbuzenské vzťahy k rôznym skupinám mnohobunkových organizmov, napríklad Mycetozoea k hubám alebo Phytomastigophorea k stielkatým rastlinám. Mnohobunkové organizmy pravdepodobne vznikli z koloniálnych prvokov. Príkladom prechodu medzi jednobunkovým a mnohobunkovým organizmom je napríklad rod váľač (Volvox).

Pri pohlavnom rozmnožovaní sa mnohobunkový organizmus vyvíja z pôvodnej jedinej bunky – zygoty, čo je oplodnené vajíčko. Vajíčko sa ďalej delí (brázduje) a vzniká embryo. Postupne dochádza k špecializácii buniek. Na rozdiel od jednobunkových organizmov tvorbu pohlavných buniek u mnohobunkovcov nedokáže zabezpečovať každá telová bunka jedinca, ale len špecializované (generatívne) bunky. Väčšina (vyspelejších) mnohobunkových organizmov nedokáže ani na obmedzený čas fungovať samostatne, rozložená na jednotlivé bunky. Taktiež výživu okrem najprimitívnejších mnohobunkovcov zabezpečujú len bunky špecializovaného tkaniva či pletiva (tráviaceho epitelu u živočíchov, alebo asimilačného pletiva u rastlín). Bunky spolu dokážu komunikovať prostredníctvom bunkových spojov.

Za mnohobunkové organizmy sa všeobecne považujú len organizmy zložené z buniek s jadrom, čiže eukaryoty. Napriek tomu aj niektoré prokaryoty nesú znaky vzájomnej komunikácie, spolupráce či diferenciácie. Napríklad v kolóniáxch siníc sa tvoria špecializované bunky na fixovanie vzdušného dusíka, bunky streptokokov zase dokážu vzájomne komunikovať.

Stavebná mnohorodosť na začiatku vývoja mnohobunkovcov naznačuje, že mnohobunkové organizmy majú viacerých predkov a mnohobunkovosť teda vznikla v prírode viackrát a nezávisle na sebe.

Expresia génov

Na rozdiel od jednobunkových organizmov, kde expresia génov slúži najmä ma prispôsobenie sa meniacim podmienkam prostredia, u mnohobunkovcov slúži expresia (výber génov, podľa ktorých sa budú momentálne syntetizovať bielkoviny) na diferenciáciu tkanív a pletív. V súvislosti s odlišným účelom génovej expresie sa mechanizmy enzýmovej indukcie a represie veľmi rozšírené v jednobunkových organizmoch uplatňujú v mnohobunkových organizmoch iba málo. Drvivá väčšina buniek mnohobunkového organizmu má rovnakú alebo takmer rovnakú genetickú výbavu ako zygota, z ktorej postupným delením vznikla. Mnohobunkové organizmy však tvorí väčšinou množsto tvarovo a funkčne odlišných buniek, napríklad tkanivá človeka tvorí približne 200 typov buniek ktoré majú ďalšie podtypy.

Syntéza niektorých bielkovín je pre všetky bunky spoločná. Ide o bielkoviny zabezpečujúce základné životné funkcie bunky, napríklad glykolýzu, oxidatívnu fosforyláciu, tvorbu ribozómov a iné. Gény, ktoré kódujú tieto bielkoviny, sa označujú ako prevádzkové gény. Okem nich však existujú ešte aj gény produkujúce špecifické bielkoviny napríklad hemoglobín. Tieto gény, ktoré nevyužívajú všetky typy buniek, len bunky špecikálne na to prospôsobené, sa nazývvajú špecifické gény.

Keďže DNA eukaryotov je naviazaná na históny a iné bielkoviny, tvorí kompaktné chromatínové vlákno, ktoré v základnom stave nie je možné transkripovať. Musí dôjsť k modifikácii histónov alebo samotnej DNA, aby sa umožnila transkripcia. Gény sú preto pod tzv. pozitívnou kontrolou – musí sa objaviť faktor, ktorý transkripciu umožní (transkripčný faktor).

Medzibunková komunikácia

Pre efektívnu spoluprácu musia bunky v mnohobunkovom organizme spolu vedieť komunikovať. Komunikácia je základom odlišnej expresie génov v jednotlivých bunkách a tým aj ich diferenciácie. Existuje množstvo rozličných spôsobov, akými si bunky vymieňajú informácie. Bunka nie je schopná zachytiť každý z množstva signálov, ktoré ju neustále obklopujú. Reaguje len na tie, na ktorých príjem je prispôsobená. Poruchy v príjme signálov spôsobené napríklad mutáciou patričného génu vedú k závažným ochoreniam až k smrti organizmu.

Najrozšírenejšou formou komunikácie je vyslanie chemickej látky do krvného obehu živočícha či miazgy rastliny. Vyslaná látka sa nazýva hormón a väčšinou sa môže dostať do celého tela, hoci naň odpovedajú iba niektoré bunky. Na menšiu vzdialenosť funguje parakrinná komunikácia, kedy bunka vysiela do okolia chemický signál, na ktorý odpovedajú len blízke bunky. Ešte obmedzenejšie možnosti (ohľadom vzdialenosti) poskytuje dotyková komunikácia, pri ktorej sa štruktúra v membráne signalizujúcej bunky musí chemicky naviazať na štruktúru cieľovej bunky. Epitelovce, pod ktoré patrí väčšina živočíchov, majú oproti rastlinám a hubám ešte ďalší možný spôsob komunikácie – nervový.

Signálne molekuly, či sú už prinesené z väčšej alebo menšej diaľky, sa musia naviazať na receptor cieľovej bunky. Podľa toho, či chemické vlastnosti dovoľujú signálnej molekule prechádzať cez cytoplazmatickú membránu alebo nie, je receptor umiestnený v membráne bunky (pre molekuly, ktoré cez ňu neprechádzajú) alebo vo vnútri bunky (molekuly, ktoré prechádzajú). Po naviazaní sa na receptor spustí komplex molekula (ligand)-receptor signálnu dráhu, ktorá spôsobí bunkovú odpoveď. Tou môže byť zmena dejov prebiehajúcich v cytoplazme, alebo zmena expresie génov. V druhom prípade trvá bunková odpoveď dlhšie.

Všeobecné usporiadanie

Mnohobunkový organizmus je hierarchicky usporiadaný: jednotlivé bunky tvoria tkanivá, tkanivá tvoria orgány, orgány tvoria orgánové systémy a orgánové systémy tvoria samotný organizmus. Každá hierarchická úroveň je kvalitatívne vyššie ako súbor jej častí.

Spojenie buniek

Schéma tesného bunkového spojenia (anglicky tight junction), ktoré sa vyskytuje v hornej časti medzi bunkami črevného epitelu (horná časť obrázka). Cez toto spojenie molekuly neprechádzajú a čokoľvek sa chce dostať na druhú stranu, musí prejsť cez samotné bunky epitelu. Cytoplazmatické membrány dvoch susedných buniek sú znázornené modrou, sieť proteínov vytvárajúca spojenie je znázornená zelenou.

Aby sa mnohobunkový organizmus nerozpadol, medzi väčšinou jeho buniek musia existovať mechanické spoje. Bunky sú spojené buď priamym kontaktom, alebo prostredníctvom tzv. extracelulárnej matrix, ktorú bunky do svojho okolia vylučujú. Jedným z typov extracelulárnej matrix je napríklad bunková stena, ktorá pomáha vzájomnému spojeniu buniek rastlín a húb. Živočíchy však bunkovú stenu nemajú a sú preto pospájané rôznymi druhmi proteínov, ktoré prechádzajú ich cytoplazmatickou membránou a v cytoplazme sú ukotvené o rôzne zložky cytoskeletu.

Bunky rovnakého tkaniva majú na svojich povrchoch rovnaké adhézne molekuly, ktoré im umožňujú sa spojiť len s rovnakým typom buniek. Tým sa zabráni tomu, aby sa bunky rôznych tkanív nesprávne prepájali.

Migrácia buniek

Pre mnohé bunky mnohobunkových organizmov je nežiadúce, aby zostali na pozíciách, na ktorých počas ontogenézy vznikli. Od miesta svojho vzniku musia putovať na novú pozíciu, kde sa definitívne usadia, alebo zostávajú celý svoj život pohyblivými (napr. leukocyty), alebo istý čas strávia na určitom mieste, no za zmenených odmienok sa musia presunúť. Ľudské bunky majú dva základné spôsoby migrácie: améboidný pohyb a migrácia mezenchymálneho typu.

Apoptóza

Bližšie informácie v hlavnom článku: Apoptóza

V mnohobunkových orgnaizmoch veľmi často musia byť niektoré bunky obetované pre dobro celého organizmu. Bunka, ktorá má vážnu poruchu, alebo ktorá skrátka už nie je potrebná, spácha programovanú bunkovú smrť zvanú apoptóza. Apoptóza je zariadená na rozdiel od nekrózy tak, aby spôsobila čo najmenšie problémy okolitým živým bunkám. Živočíšne bunky musia byť dokonca neustále vystavované pôsobeniu signálov, ktoré sa nazývajú faktory pre prežitie. Ak sú im tieto faktory odobrané, spúšťa sa apoptóza, hoci bunka môže byť inak úplne zdravá.

Zdroje

  • Dušan Matis. Zoológia bezchordátov. [s.l.] : [s.n.], 1997.
  • MIŠÚROVÁ, Eva; SOLÁR, Peter. Molekulová biológia. [s.l.] : Univerzita Pavla Jozefa Śafárika v Košiciach, 2007. ISBN 978-80-7097-671-5.
  • ALBERTS, Bruce; BRAY, Dennis; JOHNSON, Alexander, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter Základy buněčné biologie. Redakcia Miranda Brownová, Eleanor Lawrenceová, Valerie Nealová, Anne Vinnicombeová; preklad Arnošt Kotyk, Bohumil Bouzek, Pavel Hozák; ilustrácie Nigel Orme. 2.. vyd. Ústí nad Labem : Espero Publishing, © 1998. ISBN 80-902906-2-0. (česky)
  • KITTNAR, Otomar a kol. Lékařská fyziologie. Praha : Grada, 2011. ISBN 978-80-247-3068-4. (po česky)