Lorentzova transformácia

z Wikipédie, slobodnej encyklopédie
Prejsť na: navigácia, hľadanie
Vzťah medzi referenčnou súradnicovou sústavou a jej Lorentzovou transformáciou.

Lorentzova transformácia vo fyzike znamená množinu štyroch rovníc používaných na prepočet súradníc priestoru a času pri prechode medzi inerciálnymi súradnicovými sústavami za predpokladu konštantnej rýchlosti svetla vo všetkých inerciálnych sústavách. V roku 1905 pomenoval Henri Poincaré Lorentzovu transformáciu po nemeckom fyzikovi a matematikovi Hendrikovi Antoonovi Lorentzovi (1853 – 1928). Vytvorili matematickú bázu pre Einsteinovu špeciálnu teóriu relativity. O Lorentzovej transformácii sa môže uvažovať aj ako o rotácii v Minkowského priestoročase. Všeobecnejšia množina transformácií zahrňujúca tiež transláciu aj priestorovú rotáciu súradnicových ôs sa nazýva Poincarého grupa.

Predpokladajme, že máme dvoch pozorovateľov O a O'. Obaja používajú svoju vlastnú karteziánsku súradnicovú sústavu na meranie časových a priestorových intervalov. O používa (x, y,z, t) a O' používa (x',y',z',t'). Teraz predpokladajme, že obaja pozorovatelia sú vzhľadom na seba v stave rovnomerného priamočiareho pohybu v smere osi x. Rýchlosť v smere osi y aj z je nulová a v čase merania sa os x pozorovateľa O prekrýva s osou x' pozorovateľa O'. Ak vezmeme do úvahy fakt, že rýchlosť svetla je konštantná vzhľadom na akúkoľvek inerciálnu súradnicovú sústavu (potvrdený v roku 1887 v Michelsonovom-Morleyovom experimente), potom môžeme jednoducho vyvodiť nasledujúce hodnoty kontrakcie dĺžky a dilatácie času súradnicovej sústavy pozorovateľa O' vzhľadom na súradnicovú sústavu pozorovateľa O:

.

Lorentzova transformácia sa zapisuje v maticovej forme ako:

kde sa nazýva Lorentzov faktor a .

Pri nízkych rýchlostiach sa táto transformácia blíži ku Galileovej transformácii z klasickej fyziky:

.

Lorentzova transformácia bola po prvýkrát objavená a publikovaná Josephom Larmorom v roku 1897. V poradí prvá verzia transformácie bola ale publikovaná už v roku 1890 Hendrikom Lorentzom. Svoju konečnú verziu publikoval ten istý autor v roku 1899 a 1904. Larmorove a Lorentzove konečné rovnice neboli zapísané v modernej symbolike a forme, ale boli algebraicky ekvivalentné tým, ktoré publikoval v roku 1905 Henri Poincaré, francúzsky matematik, ktorý ich upravil, aby dal týmto štyrom rovniciam koherentnú a konzistentnú formu, v ktorej ich poznáme dnes. Obaja, Larmor aj Lorentz, objavili, že transformácia rešpektuje Maxwellove rovnice elektromagnetizmu. Prírodné zákonysymetrické vzhľadom na Lorentzovu transformáciu, to znamená, že ak na ne aplikujeme Lorentzovu transformáciu, nezmenia sa.

Web odkazy[upraviť | upraviť zdroj]