Redaktor:Peterzet/pieskovisko: Rozdiel medzi revíziami

z Wikipédie, slobodnej encyklopédie
Smazaný obsah Přidaný obsah
Peterzet (diskusia | príspevky)
Peterzet (diskusia | príspevky)
Bez shrnutí editace
Riadok 5: Riadok 5:


Pri teoretickom štúdiu kondenzovaných látok sa v súčasnosti využívajú hlavne zákony kvantovej a štatistickej fyziky, pričom mnohé teoretické koncepty a techniky sú úzko späté s [[fyzika elementárnych častíc|fyzikou elementárnych častíc]] ako aj nukleárnou fyzikou.<ref name="marvincohen2008">{{cite journal|last=Cohen|first=Marvin L.|title=Essay: Fifty Years of Condensed Matter Physics|journal=Physical Review Letters|year=2008|volume=101|issue=25|doi=10.1103/PhysRevLett.101.250001|url=http://prl.aps.org/edannounce/PhysRevLett.101.250001|accessdate=31 March 2012|bibcode = 2008PhRvL.101y0001C }}</ref> V minulosti bolo mnoho výsledkov dosiahnutých aj v rámci klasickej mechaniky (napríklad Drudeho model), tieto ale majú obmedzenú aproximatívnu platnosť. Experimentálne štúdium v rámci fyziky kondenzovaných látok sa zameriava na meranie rôznych makroskopických veličín. Fyzika kondenzovaných látok má mnohé presahy do [[Chémia|chémie]], [[materiálové inžinierstvo|materialového inžinierstva]], či do [[nanotechnológie|nanotechnológii]]. Veľmi úzky vzťah existuje aj smerom k [[atómová fyzika|atómovej fyzike]] a [[biofyzika|biofyzike]].
Pri teoretickom štúdiu kondenzovaných látok sa v súčasnosti využívajú hlavne zákony kvantovej a štatistickej fyziky, pričom mnohé teoretické koncepty a techniky sú úzko späté s [[fyzika elementárnych častíc|fyzikou elementárnych častíc]] ako aj nukleárnou fyzikou.<ref name="marvincohen2008">{{cite journal|last=Cohen|first=Marvin L.|title=Essay: Fifty Years of Condensed Matter Physics|journal=Physical Review Letters|year=2008|volume=101|issue=25|doi=10.1103/PhysRevLett.101.250001|url=http://prl.aps.org/edannounce/PhysRevLett.101.250001|accessdate=31 March 2012|bibcode = 2008PhRvL.101y0001C }}</ref> V minulosti bolo mnoho výsledkov dosiahnutých aj v rámci klasickej mechaniky (napríklad Drudeho model), tieto ale majú obmedzenú aproximatívnu platnosť. Experimentálne štúdium v rámci fyziky kondenzovaných látok sa zameriava na meranie rôznych makroskopických veličín. Fyzika kondenzovaných látok má mnohé presahy do [[Chémia|chémie]], [[materiálové inžinierstvo|materialového inžinierstva]], či do [[nanotechnológie|nanotechnológii]]. Veľmi úzky vzťah existuje aj smerom k [[atómová fyzika|atómovej fyzike]] a [[biofyzika|biofyzike]].


== Život ==
Frédéric Joliot vyštudoval vyššiu odbornú školu chémie a fyziky v [[Paríž]]i. Školu ukončil v roku 1923 a nastúpil do železiarní v [[Luxenburg]]u. Po necelých dvoch rokoch bol prepustený. S pomocou profesora Langevina získal v roku 1925 miesto v laboratóriu [[Marie Curiová|Marie Curie]]. Aby sa uživil, pribral k tomu suplovania matematiky a fyziky na súkromné ​​koľaji. Po necelom roku sa oženil s [[Irène Joliotová-Curieová|Irène Curie]], dcérou Marie Curie.

V roku [[1930]] získal doktorát prírodných vied za prácu o elektrochémie polónia. Od roku 1932 publikoval množstvo prác spoločne so svojou ženou. Používali potom tiež obaja priezvisko Joliot-Curie.


A variety of topics in physics such as [[crystallography]], [[metallurgy]], [[elasticity (physics)|elasticity]], [[magnetism]], etc., were treated as distinct areas, until the 1940s when they were grouped together as ''[[Solid state physics]]''. Around the 1960s, the study of physical properties of [[liquid]]s was added to this list, and it came to be known as condensed matter physics.<ref name="rmp" /> According to physicist [[Philip Warren Anderson|Phil Anderson]], the term was coined by him and [[Volker Heine]] when they changed the name of their group at the [[Cavendish Laboratories]], [[Cambridge]] from "Solid state theory" to "Theory of Condensed Matter",<ref name="pwa-princeton">{{cite web|title=Philip Anderson|url=http://www.princeton.edu/physics/people/display_person.xml?netid=pwa&display=faculty|work=Department of Physics|publisher=Princeton University|accessdate=27 March 2012}}</ref> as they felt it did not exclude their interests in the study of liquids, [[nuclear matter]] and so on.<ref name="wsn">{{cite journal|title=More and Different|url=http://www.worldscientific.com/newsletter/newsletter/nov11n33p02.shtml|journal=World Scientific Newsletter|date=November 2011|volume=33 |page =2}}</ref> The [[Bell Labs]] (then known as the ''Bell Telephone Laboratories'') was one of the first institutes to conduct a research program in condensed matter physics.<ref name="rmp">{{cite journal|last=Kohn|first=W.|title=An essay on condensed matter physics in the twentieth century|journal=Reviews of Modern Physics|year=1999|volume=71|issue=2|url=http://nanoelectronics.unibas.ch/education/ModernPhysics/KohnCondMat.pdf|accessdate=27 March 2012|doi=10.1103/RevModPhys.71.S59|pages=S59|bibcode = 1999RvMPS..71...59K }}</ref>
A variety of topics in physics such as [[crystallography]], [[metallurgy]], [[elasticity (physics)|elasticity]], [[magnetism]], etc., were treated as distinct areas, until the 1940s when they were grouped together as ''[[Solid state physics]]''. Around the 1960s, the study of physical properties of [[liquid]]s was added to this list, and it came to be known as condensed matter physics.<ref name="rmp" /> According to physicist [[Philip Warren Anderson|Phil Anderson]], the term was coined by him and [[Volker Heine]] when they changed the name of their group at the [[Cavendish Laboratories]], [[Cambridge]] from "Solid state theory" to "Theory of Condensed Matter",<ref name="pwa-princeton">{{cite web|title=Philip Anderson|url=http://www.princeton.edu/physics/people/display_person.xml?netid=pwa&display=faculty|work=Department of Physics|publisher=Princeton University|accessdate=27 March 2012}}</ref> as they felt it did not exclude their interests in the study of liquids, [[nuclear matter]] and so on.<ref name="wsn">{{cite journal|title=More and Different|url=http://www.worldscientific.com/newsletter/newsletter/nov11n33p02.shtml|journal=World Scientific Newsletter|date=November 2011|volume=33 |page =2}}</ref> The [[Bell Labs]] (then known as the ''Bell Telephone Laboratories'') was one of the first institutes to conduct a research program in condensed matter physics.<ref name="rmp">{{cite journal|last=Kohn|first=W.|title=An essay on condensed matter physics in the twentieth century|journal=Reviews of Modern Physics|year=1999|volume=71|issue=2|url=http://nanoelectronics.unibas.ch/education/ModernPhysics/KohnCondMat.pdf|accessdate=27 March 2012|doi=10.1103/RevModPhys.71.S59|pages=S59|bibcode = 1999RvMPS..71...59K }}</ref>

Verzia z 22:02, 10. september 2014

Fyzika kondenzovaných látok sa zaoberá rôznymi kondenzovanými fázami.[1] Medzi najbežnejšie kondenzované fázy pri tom patria pevné látky a kvapaliny. Menej bežné fázy zahŕňajú napríklad ferromagnetické a antiferromagnetické fázy spinov v atomárnych mriežkach, supravodivé fázy vyskytujúce sa väčšinou pri nízkych teplotách, či napríklad aj Boseho–Einsteinove kondenzáty vyskytujúce sa v ultrachladných bozonických systémoch.

Pri teoretickom štúdiu kondenzovaných látok sa v súčasnosti využívajú hlavne zákony kvantovej a štatistickej fyziky, pričom mnohé teoretické koncepty a techniky sú úzko späté s fyzikou elementárnych častíc ako aj nukleárnou fyzikou.[2] V minulosti bolo mnoho výsledkov dosiahnutých aj v rámci klasickej mechaniky (napríklad Drudeho model), tieto ale majú obmedzenú aproximatívnu platnosť. Experimentálne štúdium v rámci fyziky kondenzovaných látok sa zameriava na meranie rôznych makroskopických veličín. Fyzika kondenzovaných látok má mnohé presahy do chémie, materialového inžinierstva, či do nanotechnológii. Veľmi úzky vzťah existuje aj smerom k atómovej fyzike a biofyzike.


Život

Frédéric Joliot vyštudoval vyššiu odbornú školu chémie a fyziky v Paríži. Školu ukončil v roku 1923 a nastúpil do železiarní v Luxenburgu. Po necelých dvoch rokoch bol prepustený. S pomocou profesora Langevina získal v roku 1925 miesto v laboratóriu Marie Curie. Aby sa uživil, pribral k tomu suplovania matematiky a fyziky na súkromné ​​koľaji. Po necelom roku sa oženil s Irène Curie, dcérou Marie Curie.

V roku 1930 získal doktorát prírodných vied za prácu o elektrochémie polónia. Od roku 1932 publikoval množstvo prác spoločne so svojou ženou. Používali potom tiež obaja priezvisko Joliot-Curie.

A variety of topics in physics such as crystallography, metallurgy, elasticity, magnetism, etc., were treated as distinct areas, until the 1940s when they were grouped together as Solid state physics. Around the 1960s, the study of physical properties of liquids was added to this list, and it came to be known as condensed matter physics.[3] According to physicist Phil Anderson, the term was coined by him and Volker Heine when they changed the name of their group at the Cavendish Laboratories, Cambridge from "Solid state theory" to "Theory of Condensed Matter",[4] as they felt it did not exclude their interests in the study of liquids, nuclear matter and so on.[5] The Bell Labs (then known as the Bell Telephone Laboratories) was one of the first institutes to conduct a research program in condensed matter physics.[3]

References to "condensed" state can be traced to earlier sources. For example, in the introduction to his 1947 "Kinetic theory of liquids" book,[6] Yakov Frenkel proposed that "The kinetic theory of liquids must accordingly be developed as a generalization and extension of the kinetic theory of solid bodies. As a matter of fact, it would be more correct to unify them under the title of "condensed bodies".

Historický vývoj

Obdobie Objav
3 miliony rokov p.n.l. až 4. tisícročie p.n.l. Doba kamenná
300 až 1200 p.n.l. Doba bronzová
1200 až 700 p.n.l. Doba železná
500 až 370. p.n.l. Leukippos z Miléta, Démokritos z Abdér rozvíjajú atomistickú teóriu
500 až 300 p.n.l. Empedokles považuje hmotu za zloženú zo štyroch elementov (oheň, voda, vzduch, zem). Platón a Aristoteles rozvíjajú teóriu elementov, Aristoteles pridáva piaty element éter a odmieta atomistickú povahu elementov, zastáva ich kontinuálny charakter.
stredovek Prevládajú Aristotelové predstavy.
1700 Atomistická myšlienka, Newton
19. storočie Physics is considered to be “solved” by Classical Mechanics, Electromagnetism, and Thermodynamics. Metallurgy becomes

important and is described by empirical laws.

okolo 1800 Humphry Davy pozoroval, že zo 40 vtedy známych prvkov má 26 kovové vlastnosti (lesk, rozťažnosť, vysoká elektrická a tepelná vodivosť).[7] This indicated that the atoms in Dalton's atomic theory were not indivisible as Dalton claimed, but had inner structure. Davy further claimed that elements that were then believed to be gases, such as nitrogen and hydrogen could be liquefied under the right conditions and would then behave as metals.[8][notes 1]
1820 Klasifikácia kryštálových symetrii (Brilliouin) ???????
1823 Michael Faraday, then an assistant in Davy's lab, successfully liquefied chlorine and went on to liquefy all known gaseous elements, with the exception of nitrogen, hydrogen and oxygen.[7]
a Magnetism as a property of matter has been known since pre-historic times.[10] However, the first modern studies of magnetism only started with the development of electrodynamics by Faraday, Maxwell and others in the nineteenth century, which included the classification of materials as ferromagnetic, paramagnetic and diamagnetic based on their response to magnetization.[11]
1853 Wiedemannov Franzov zákon (tepelná a elektrická vodivosť)
1869 1869, Irish chemist Thomas Andrews studied the phase transition from a liquid to a gas and coined the s phases,[12] and Dutch physicist Johannes van der Waals supplied the theoretical framework which allowed the prediction of critical behavior based on measurements at much higher temperatures.[13]
1879 Edwin Herbert Hall pozoroval vznik tranzverzného elektrického napätia pri pôsobení magnetického poľa na prúd, efekt nazývaný dnes Hallov jav.[14] Správne teoretické vysvetlenie javu bolo podané až po objave elektrónu.
1897 Thomson objavuje elektrón.
1900 1900 Drude (a Lorentz) teória kovov na báze voľného plynu elektrónov. Paul Drude proposed the first theoretical model for a classical electron moving through a metallic solid.[2] Drude's model described properties of metals in terms of a gas of free electrons, and was the first microscopic model to explain empirical observations such as the Wiedemannov–Franzov zákon.[15][16] However, despite the success of Drude's free electron model, it had one notable problem, in that it was unable to correctly explain the electronic contribution to the specific heat of metals, as well as the temperature dependence of resistivity at low temperatures.[17]
1906 1906, Pierre Weiss introduced the concept of magnetic domains to explain the main properties of ferromagnets.[18]
1908 1908, James Dewar and H. Kamerlingh Onnes were successfully able to liquefy hydrogen and then newly discovered helium, respectively.[7]
1911 Onnes (a Holst) objav supravodivovosti v medi NB: Onnes 1913 when he observed the electrical resistivity of mercury to vanish at temperatures below a certain value.[19] The phenomenon completely surprised the best theoretical physicists of the time, and it remained unexplained for several decades.[20] Albert Einstein, in 1922, said regarding contemporary theories of superconductivity that “with our far-reaching ignorance of the quantum mechanics of composite systems we are very far from being able to compose a theory out of these vague ideas”.[21]
1912 1912 Max von Laue objavuje kryštálovú difrakciu röntgenového žiarenia The structure of crystalline solids was studied by Max von Laue and Paul Knipping, when they observed the X-ray diffraction pattern of crystals, and concluded that crystals get their structure from periodic lattices of atoms.[22]
1913 W.H. & W.L. Bragg analyzujú kryštály pomocou röntgenového žiarenia,
1905 Teória fotoemisie Einstein
1907-1913 1907-1913 Teória špecifického tepla pevných látok (Einstein, Debye, Born)
1920 1920’s Ramanov rozptyl
a 19020-te difrakcia elektrónov na kryštáloch (Davisson, Thomson)
1925-1928 1925-1928 kvantová mechanika (Schrödinger, Heisenberg, Pauli, Dirac)
1926-1928 1926-1928 Sommerfeld, Pauli: The electron gas with Dirac statistics. Felix Bloch, Arnold Sommerfeld, and independently by Wolfgang Pauli, who used quantum mechanics to describe the motion of a quantum electron in a periodic lattice. In particular, Sommerfeld's theory accounted for the Fermi–Dirac statistics satisfied by electrons and was better able to explain the heat capacity and resistivity.[17]
1928-1933 The Quantum Theory of an electron in a solid: Band Structure (Bloch, Peierls, Brillouin, Van Vleck) Band structure calculations was first used in 1930 to predict the properties of new materials, Magnetism (Pauli, Landau, Heisenberg, Bethe)

Alvén, Néel 1970 1947 S., B., B. 1956

1935 The mathematics of crystal structures developed by Auguste Bravais, Yevgraf Fyodorov and others was used to classify crystals by their symmetry group, and tables of crystal structures were the basis for the series International Tables of Crystallography, first published in 1935.[23]
1947 John Bardeen, Walter Brattain and William Shockley developed the first semiconductor-based transistor, heralding a revolution in electronics.[2]
1950 1950’s Kvantová teória poľa (Feynman, Dyson, Schwinger, Tomanaga...)
1950 1950 Ginzburg-Landau: fenomenologická teória supravodivosti Ginzburg, Leggett, Abrikosov, 2003
1950 Late 1950’s Teória interagujúcich elektrónov v pevných látkach (Landau, Migdal)
1950 Late 1950’s Rozptyl a difrakcia neutrónov (Brockhouse, Shull)
1957 1957 John Bardeen, Cooper, Schriefer: teória konvenčnej supravodivosti
1958 1958 Josephsonov efekt tunelujúcich elektrónov v supravodičoch
1960 1960’s Pochopenia minima vodivosti: Kondov efekt (Kondo, Anderson 1969)
The study of phase transition and the critical behavior of observables, known as critical phenomena, was a major field of interest in the 1960s.[24] Leo Kadanoff, Benjamin Widom and Michael Fisher developed the ideas of critical exponents and scaling.
1960 1960-te Density Functional Theory (Kohn, Pople)
1960 1960-te teória tekutých kryštálov NB: de Gennes 1991
1972 1970’s Renormalizačná grupa NB: Wilson 1982 Renormalizačná grupa Leo Kadanoff, Benjamin Widom and Michael Fisher developed the ideas of critical exponents and scaling. These ideas were unified by Kenneth Wilson in 1972, under the formalism of the renormalization group in the context of quantum field theory.[24]
1972 1972 Superfluid He3 (Lee, Osheroff, Richardson) NB: L.,O.,R. 1996
1980 The Integer Quantum Hall Effect von Klitzing 1985 The quantum Hall effect was discovered by Klaus von Klitzing in 1980 when he observed the Hall conductivity to be integer multiples of a fundamental constant.[25] (see figure) The effect was observed to be independent of parameters such as the system size and impurities, and in 1981, theorist Robert Laughlin proposed a theory describing the integer states in terms of a topological invariant called the Chern number.[26]
1982 Shortly after, in 1982, Horst Störmer and Daniel Tsui observed the fraktálny kvantový Hallov efekt where the conductivity was now a rational multiple of a constant. Laughlin, in 1983, realized that this was a consequence of quasiparticle interaction in the Hall states and formulated a variational solution, known as the Laughlin wavefunction.[27] The study of topological properties of the fractional Hall effect remains an active field of research.
1985 1985 Fulerény C60 (Curl, Kroto, Smalley)
1986 1987 objav vysokoteplotnej supravodivosti Karl Müller and Johannes Bednorz discovered the first high temperature superconductor, a material which was superconducting at temperatures as high as 50 Kelvin. It was realized that the high temperature superconductors are examples of strongly correlated materials where the electron–electron interactions play an important role.[28] A satisfactory theoretical description of high-temperature superconductors is still not known and the field of strongly correlated materials continues to be an active research topic.
1988 1988 obrovská magnetorezistencia
1991 1991 uhlíkové nanotrubky (Iijima)
1995 1995 realizácia Boseho-Einsteinovho kondenzátu NB: (Ketterle, Cornell, Wieman) K., C., .W. 2001
2003 2003 realizácia monoatomárnych grafénových vrstiev

Review article on the history of Cond. Mat. Physics: L.Hoddeson, G.Baym, M.Eckert, Rev. Mod. Phys. 59, p.287 (1987).

Nobelové ceny

NB: Max von Laue 1914

NB: H&L. Bragg 1915

NB:Einstein 1921

NB: Raman 1930

(Davisson, Thomson) NB: D., T. 1937

NB: Landau 1962

Bardeen, Cooper, Schriefer: teória konvenčnej supravodivosti NB: B.,C.,S. 1972

NB: Esaki, Giaever, Josephson 1973

NB: Anderson, Mott, Van Vleck 1977

NB: Wilson 1982

NB: Müller, Bednorz 1987

NB: de Gennes 1991

(Brockhouse, Shull) NB: B.,S., 1994

NB: 1996 (Chémia)

(Lee, Osheroff, Richardson) NB: L.,O.,R. 1996

NB: (Tsui, Störmer, Laughlin) NB: T, S., L. 1998

(Kohn, Pople) NB: 1998 (Chemistry)

NB: Fert, Grünberg 2007

NB: Geim,Novoselov 2010

Heike Kamerlingh Onnes and Johannes van der Waals with the helium "liquefactor" in Leiden (1908)
A replica of the first point-contact transistor in Bell labs

After the advent of quantum mechanics, Lev Landau in 1930 predicted the quantization of the Hall conductance for electrons confined to two dimensions.[29]

Pierre Curie studied the dependence of magnetization on temperature and discovered the Curie point phase transition in ferromagnetic materials.[10]

The first attempt at a microscopic description of magnetism was by Wilhelm Lenz and Ernst Ising through the Ising model that described magnetic materials as consisting of a periodic lattice of spins that collectively acquired magnetization.[10] The Ising model was solved exactly to show that spontaneous magnetization cannot occur in one dimension but is possible in higher-dimensional lattices. Further research such as by Bloch on spin waves and Néel on antiferromagnetism led to the development of new magnetic materials with applications to magnetic storage devices.[10]

Moderná mnohočasticová fyzika

The Sommerfeld model and spin models for ferromagnetism illustrated the successful application of quantum mechanics to condensed matter problems in the 1930s. However, there still were several unsolved problems, most notably the description of superconductivity and the Kondo effect.[30] After World War II, several ideas from quantum field theory were applied to condensed matter problems. These included recognition of collective modes of excitation of solids and the important notion of a quasiparticle. Russian physicist Lev Landau used the idea for the Fermi liquid theory wherein low energy properties of interacting fermion systems were given in terms of what are now known as Landau-quasiparticles.[30] Landau also developed a mean field theory for continuous phase transitions, which described ordered phases as spontaneous breakdown of symmetry. The theory also introduced the notion of an order parameter to distinguish between ordered phases.[31] Eventually in 1965, John Bardeen, Leon Cooper and John Schrieffer developed the so-called BCS theory of superconductivity, based on the discovery that arbitrarily small attraction between two electrons can give rise to a bound state called a Cooper pair.[32]

The quantum Hall effect: Components of the Hall resistivity as a function of the external magnetic field

In 2009, David Field and researchers at Aarhus University discovered spontaneous electric fields when creating prosaic films of various gases. This has more recently expanded to form the research area of spontelectrics.[33]

Theoretical

Theoretical condensed matter physics involves the use of theoretical models to understand properties of states of matter. These include models to study the electronic properties of solids, such as the Drude model, the Band structure and the density functional theory. Theoretical models have also been developed to study the physics of phase transitions, such as the Ginzburg–Landau theory, critical exponents and the use of mathematical techniques of quantum field theory and the renormalization group. Modern theoretical studies involve the use of numerical computation of electronic structure and mathematical tools to understand phenomena such as high-temperature superconductivity, topological phases and gauge symmetries.

Emergence

Bližšie informácie v hlavnom článku: Emergence

Theoretical understanding of condensed matter physics is closely related to the notion of emergence, wherein complex assemblies of particles behave in ways dramatically different from their individual constituents.[32] For example, a range of phenomena related to high temperature superconductivity are not well understood, although the microscopic physics of individual electrons and lattices is well known.[34] Similarly, models of condensed matter systems have been studied where collective excitations behave like photons and electrons, thereby describing electromagnetism as an emergent phenomenon.[35] Emergent properties can also occur at the interface between materials: one example is the lanthanum-aluminate-strontium-titanate interface, where two non-magnetic insulators are joined to create conductivity, superconductivity, and ferromagnetism.

Electronic theory of solids

Bližšie informácie v hlavnom článku: Electronic band structure

The metallic state has historically been an important building block for studying properties of solids.[36] The first theoretical description of metals was given by Paul Drude in 1900 with the Drude model, which explained electrical and thermal properties by describing a metal as an ideal gas of then-newly discovered electrons. This classical model was then improved by Arnold Sommerfeld who incorporated the Fermi–Dirac statistics of electrons and was able to explain the anomalous behavior of the specific heat of metals in the Wiedemann–Franz law.[36] In 1913, X-ray diffraction experiments revealed that metals possess periodic lattice structure. Swiss physicist Felix Bloch provided a wave function solution to the Schrödinger equation with a periodic potential, called the Bloch wave.[37]

Calculating electronic properties of metals by solving the many-body wavefunction is often computationally hard, and hence, approximation techniques are necessary to obtain meaningful predictions.[38] The Thomas–Fermi theory, developed in the 1920s, was used to estimate electronic energy levels by treating the local electron density as a variational parameter. Later in the 1930s, Douglas Hartree, Vladimir Fock and John Slater developed the so-called Hartree–Fock wavefunction as an improvement over the Thomas–Fermi model. The Hartree–Fock method accounted for exchange statistics of single particle electron wavefunctions, but not for their Coulomb interaction. Finally in 1964–65, Walter Kohn, Pierre Hohenberg and Lu Jeu Sham proposed the density functional theory which gave realistic descriptions for bulk and surface properties of metals. The density functional theory (DFT) has been widely used since the 1970s for band structure calculations of variety of solids.[38]

Symmetry breaking

Ice melting into water. Liquid water has continuous translational symmetry, which is broken in crystalline ice.
Bližšie informácie v hlavnom článku: Symmetry breaking

Certain states of matter exhibit symmetry breaking, where the relevant laws of physics possess some symmetry that is broken. A common example is crystalline solids, which break continuous translational symmetry. Other examples include magnetized ferromagnets, which break rotational symmetry, and more exotic states such as the ground state of a BCS superconductor, that breaks U(1) rotational symmetry.[39]

Goldstone's theorem in quantum field theory states that in a system with broken continuous symmetry, there may exist excitations with arbitrarily low energy, called the Goldstone bosons. For example, in crystalline solids, these correspond to phonons, which are quantized versions of lattice vibrations.[40]

Phase transition

Bližšie informácie v hlavnom článku: Phase transition

The study of critical phenomena and phase transitions is an important part of modern condensed matter physics.[41] Phase transition refers to the change of phase of a system, which is brought about by change in an external parameter such as temperature. In particular, quantum phase transitions refer to transitions where the temperature is set to zero, and the phases of the system refer to distinct ground states of the Hamiltonian. Systems undergoing phase transition display critical behavior, wherein several of their properties such as correlation length, specific heat and susceptibility diverge. Continuous phase transitions are described by the Ginzburg–Landau theory, which works in the so-called mean field approximation. However, several important phase transitions, such as the Mott insulatorsuperfluid transition, are known that do not follow the Ginzburg–Landau paradigm.[42] The study of phase transitions in strongly correlated systems is an active area of research.[43]

Experimental

Experimental condensed matter physics involves the use of experimental probes to try to discover new properties of materials. Experimental probes include effects of electric and magnetic fields, measurement of response functions, transport properties and thermometry.[6] Commonly used experimental techniques include spectroscopy, with probes such as X-rays, infrared light and inelastic neutron scattering; study of thermal response, such as specific heat and measurement of transport via thermal and heat conduction.

Image of X-ray diffraction pattern from a protein crystal.

Scattering

Bližšie informácie v hlavnom článku: Scattering

Several condensed matter experiments involve scattering of an experimental probe, such as X-ray, optical photons, neutrons, etc., on constituents of a material. The choice of scattering probe depends on the observation energy scale of interest.[44] Visible light has energy on the scale of 1 eV and is used as a scattering probe to measure variations in material properties such as dielectric constant and refractive index. X-rays have energies of the order of 10 keV and hence are able to probe atomic length scales, and are used to measure variations in electron charge density. Neutrons can also probe atomic length scales and are used to study scattering off nuclei and electron spins and magnetization (as neutrons themselves have spin but no charge).[44] Coulomb and Mott scattering measurements can be made by using electron beams as scattering probes,[45] and similarly, positron annihilation can be used as an indirect measurement of local electron density.[46] Laser spectroscopy is used as a tool for studying phenomena with energy in the range of visible light, for example, to study non-linear optics and forbidden transitions in media.[47]

External magnetic fields

In experimental condensed matter physics, external magnetic fields act as thermodynamic variables that control the state, phase transitions and properties of material systems.[48] Nuclear magnetic resonance (NMR) is a technique by which external magnetic fields can be used to find resonance modes of individual electrons, thus giving information about the atomic, molecular and bond structure of their neighborhood. NMR experiments can be made in magnetic fields with strengths up to 65 Tesla.[49] Quantum oscillations is another experimental technique where high magnetic fields are used to study material properties such as the geometry of the Fermi surface.[50] The quantum hall effect is another example of measurements with high magnetic fields where topological properties such as Chern–Simons angle can be measured experimentally.[47]

The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density.

Cold atomic gases

Bližšie informácie v hlavnom článku: Optical lattice

Cold atom trapping in optical lattices is an experimental tool commonly used in condensed matter as well as atomic, molecular, and optical physics.[51] The technique involves using optical lasers to create an interference pattern, which acts as a "lattice", in which ions or atoms can be placed at very low temperatures.[52] Cold atoms in optical lattices are used as "quantum simulators", that is, they act as controllable systems that can model behavior of more complicated systems, such as frustrated magnets.[53] In particular, they are used to engineer one-, two- and three-dimensional lattices for a Hubbard model with pre-specified parameters.[54] and to study phase transitions for Néel and spin liquid ordering.[51]

In 1995, a gas of rubidium atoms cooled down to a temperature of 170 nK was used to experimentally realize the Bose–Einstein condensate, a novel state of matter originally predicted by S. N. Bose and Albert Einstein, wherein a large number of atoms occupy a single quantum state.[55]

Aplikácie

Computer simulation of "nanogears" made of fullerene molecules. It is hoped that advances in nanoscience will lead to machines working on the molecular scale.

Research in condensed matter physics has given rise to several device applications, such as the development of the polovodičový tranzistor,[2] and laser technology.[47] Several phenomena studied in the context of nanotechnológia come under the purview of condensed matter physics.[56] Techniques such as skenovací tunelový mikroskop can be used to control processes at the nanometer scale, and have given rise to the study of nanofabrication.[57] Several condensed matter systems are being studied with potential applications to quantum computation,[58] including experimental systems like kvantové bodky, SQUIDs, and theoretical models like the toric code and the quantum dimer model.[59] Condensed matter systems can be tuned to provide the conditions of coherence and phase-sensitivity that are essential ingredients for quantum information storage.[57] Spintronika is a new area of technology that can be used for information processing and transmission, and is based on spin, rather than electron transport.[57] Condensed matter physics also has important applications to biophysics, for example, the experimental technique of magnetic resonance imaging, which is widely used in medical diagnosis.[57]

See also

Šablóna:Colbegin

Šablóna:Colend

Notes

  1. TAYLOR, Philip L.. A Quantum Approach to Condensed Matter Physics. [s.l.] : Cambridge University Press, 2002. Dostupné online. ISBN 0-521-77103-X.
  2. a b c d COHEN, Marvin L.. Essay: Fifty Years of Condensed Matter Physics. Physical Review Letters, 2008. Dostupné online [cit. 2012-03-31]. DOI10.1103/PhysRevLett.101.250001.
  3. a b KOHN, W.. An essay on condensed matter physics in the twentieth century. Reviews of Modern Physics, 1999, s. S59. Dostupné online [cit. 2012-03-27]. DOI10.1103/RevModPhys.71.S59.
  4. Philip Anderson [online]. Princeton University, [cit. 2012-03-27]. Dostupné online.
  5. More and Different. World Scientific Newsletter, November 2011, s. 2. Dostupné online.
  6. a b FRENKEL, J.. Kinetic Theory of Liquids. [s.l.] : Oxford University Press, 1947. Chyba citácie Neplatná značka <ref>; názov „exptcm“ je použitý viackrát s rôznym obsahom
  7. a b c GOODSTEIN, David; Goodstein, Judith. Richard Feynman and the History of Superconductivity. Physics in Perspective, 2000, s. 30. Dostupné online [cit. 2012-04-07]. DOI10.1007/s000160050035.
  8. DAVY, John (ed.). The collected works of Sir Humphry Davy: Vol. II. [s.l.] : Smith Elder & Co., Cornhill, 1839. Dostupné online.
  9. SILVERA, Isaac F.; Cole, John W.. Metallic Hydrogen: The Most Powerful Rocket Fuel Yet to Exist. Journal of Physics, 2010, s. 012194. DOI10.1088/1742-6596/215/1/012194.
  10. a b c d MATTIS, Daniel. The Theory of Magnetism Made Simple. [s.l.] : World Scientific, 2006. ISBN 9812386718.
  11. CHATTERJEE, Sabyasachi. Heisenberg and Ferromagnetism. Resonance, August 2004, s. 57. Dostupné online [cit. 2012-06-13]. DOI10.1007/BF02837578.
  12. ROWLINSON, J. S.. Thomas Andrews and the Critical Point. Nature, 1969, s. 541. DOI10.1038/224541a0.
  13. ATKINS, Peter; DE PAULA, Julio. Elements of Physical Chemistry. [s.l.] : Oxford University Press, 2009. ISBN 978-1-4292-1813-9.
  14. Hall, Edwin. On a New Action of the Magnet on Electric Currents. American Journal of Mathematics, 1879, s. 287–92. Dostupné online [cit. 2008-02-28]. DOI10.2307/2369245.
  15. KITTEL, Charles. Introduction to Solid State Physics. [s.l.] : John Wiley & Sons, 1996. ISBN 0-471-11181-3.
  16. HODDESON, Lillian. Out of the Crystal Maze: Chapters from The History of Solid State Physics. [s.l.] : Oxford University Press, 1992. Dostupné online. ISBN 9780195053296.
  17. a b CSURGAY, A.. The free electron model of metals. [s.l.] : Pázmány Péter Catholic University. Dostupné online.
  18. VISINTIN, Augusto. Differential Models of Hysteresis. [s.l.] : Springer, 1994. Dostupné online. ISBN 3540547932.
  19. VAN DELFT, Dirk; Kes, Peter. The discovery of superconductivity. Physics Today, September 2010, s. 38. Dostupné online [cit. 2012-04-07]. DOI10.1063/1.3490499.
  20. SLICHTER, Charles. Introduction to the History of Superconductivity [online]. American Institute of Physics, [cit. 2012-06-13]. Dostupné online.
  21. SCHMALIAN, Joerg. Failed theories of superconductivity. Modern Physics Letters B, 2010, s. 2679. DOI10.1142/S0217984910025280.
  22. ECKERT, Michael. Disputed discovery: the beginnings of X-ray diffraction in crystals in 1912 and its repercussions. Acta Crystallographica A, 2011, s. 30. Dostupné online. DOI10.1107/S0108767311039985.
  23. AROYO, Mois, I., Müller, Ulrich and Wondratschek, Hans Historical introduction. International Tables for Crystallography, 2006, s. 2–5. DOI10.1107/97809553602060000537.
  24. a b FISHER, Michael E.. Renormalization group theory: Its basis and formulation in statistical physics. Reviews of Modern Physics, 1998, s. 653. Dostupné online [cit. 2012-06-14]. DOI10.1103/RevModPhys.70.653.
  25. PANATI, Gianluca. The Poetry of Butterflies. Irish Times, April 15, 2012. Dostupné online [cit. 2012-06-14]. [nefunkčný odkaz]
  26. AVRON, Joseph E., Osadchy, Daniel and Seiler, Ruedi A Topological Look at the Quantum Hall Effect. Physics Today, 2003, s. 38. DOI10.1063/1.1611351.
  27. WEN, Xiao-Gang. Theory of the edge states in fractional quantum Hall effects. International Journal of Modern Physics C, 1992, s. 1711. Dostupné online [cit. 2012-06-14]. DOI10.1142/S0217979292000840.
  28. QUINTANILLA, Jorge; Hooley, Chris. The strong-correlations puzzle. Physics World, June 2009. Dostupné online [cit. 2012-06-14].
  29. LANDAU, L. D.; LIFSHITZ, E. M.. Quantum Mechanics: Nonrelativistic Theory. [s.l.] : Pergamon Press, 1977. ISBN 0750635398.
  30. a b COLEMAN, Piers. Many-Body Physics: Unfinished Revolution. Annales Henri Poincaré, 2003, s. 559. DOI10.1007/s00023-003-0943-9.
  31. KADANOFF, Leo, P.. Phases of Matter and Phase Transitions; From Mean Field Theory to Critical Phenomena. [s.l.] : The University of Chicago, 2009. Dostupné online.
  32. a b COLEMAN, Piers. Introduction to Many Body Physics. [s.l.] : Rutgers University, 2011. Dostupné online.
  33. FIELD, David; Plekan, O.; Cassidy, A.. Spontaneous electric fields in solid films: spontelectrics. Int.Rev.Phys.Chem., 12 Mar 2013, s. 345. DOI10.1080/0144235X.2013.767109.
  34. Understanding Emergence [online]. National Science Foundation, [cit. 2012-03-30]. Dostupné online.
  35. LEVIN, Michael; Wen, Xiao-Gang. Colloquium: Photons and electrons as emergent phenomena. Reviews of Modern Physics, 2005, s. 871. DOI10.1103/RevModPhys.77.871.
  36. a b ASHCROFT, Neil W.; MERMIN, N. David. Solid state physics. [s.l.] : Harcourt College Publishers, 1976. ISBN 978-0-03-049346-1.
  37. HAN, Jung Hoon. Solid State Physics. [s.l.] : Sung Kyun Kwan University, 2010. Dostupné online.
  38. a b PERDEW, John P.; Ruzsinszky, Adrienn. Fourteen Easy Lessons in Density Functional Theory. International Journal of Quantum Chemistry, 2010, s. 2801–2807. Dostupné online [cit. 2012-05-13]. DOI10.1002/qua.22829.
  39. NAYAK, Chetan. Solid State Physics. [s.l.] : UCLA. Dostupné online.
  40. LEUTWYLER, H.. Phonons as Goldstone bosons. ArXiv, 1996, s. 9466.
  41. Physics Through the 1990s. [s.l.] : National Research Council, 1986. Dostupné online. ISBN 0-309-03577-5. Chapter 3: Phase Transitions and Critical Phenomena.
  42. BALENTS, Leon; Bartosch, Lorenz; Burkov, Anton. Competing Orders and Non-Landau–Ginzburg–Wilson Criticality in (Bose) Mott Transitions. Progress of Theoretical Physics, 2005, s. 314. DOI10.1143/PTPS.160.314.
  43. SACHDEV, Subir; Yin, Xi. Quantum phase transitions beyond the Landau–Ginzburg paradigm and supersymmetry. Annals of Physics, 2010, s. 2. DOI10.1016/j.aop.2009.08.003.
  44. a b CHAIKIN, P. M.; LUBENSKY, T. C.. Principles of condensed matter physics. [s.l.] : Cambridge University Press, 1995. ISBN 0-521-43224-3.
  45. RISEBOROUGH, Peter S.. Condensed Matter Physics I. [s.l.] : [s.n.], 2002. Dostupné online.
  46. SIEGEL, R. W.. Positron Annihilation Spectroscopy. Annual Review of Materials Science, 1980, s. 393–425. DOI10.1146/annurev.ms.10.080180.002141.
  47. a b c COMMISSION ON PHYSICAL SCIENCES, MATHEMATICS, AND APPLICATIONS. Condensed Matter Physics. [s.l.] : National Academies Press, 1986. Dostupné online. ISBN 978-0-309-03577-4.
  48. COMMITTEE ON FACILITIES FOR CONDENSED MATTER PHYSICS. Report of the IUPAP working group on Facilities for Condensed Matter Physics : High Magnetic Fields [online]. International Union of Pure and Applied Physics, 2004. Dostupné online.
  49. Moulton, W. G. and Reyes, A. P.. High Magnetic Fields. Ed. Herlach, Fritz. [s.l.] : World Scientific, 2006. Dostupné online. ISBN 9789812774880. Nuclear Magnetic Resonance in Solids at very high magnetic fields.
  50. DOIRON-LEYRAUD, Nicolas; et al.. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature, 2007, s. 565–568. DOI10.1038/nature05872. PMID 17538614.
  51. a b SCHMEID, R.; Roscilde, T.; Murg, V.. Quantum phases of trapped ions in an optical lattice. New Journal of Physics, 2008, s. 045017. DOI10.1088/1367-2630/10/4/045017.
  52. GREINER, Markus; Fölling, Simon. Condensed-matter physics: Optical lattices. Nature, 2008, s. 736–738. DOI10.1038/453736a. PMID 18528388.
  53. BULUTA, Iulia; Nori, Franco. Quantum Simulators. Science, 2009, s. 108–11. DOI10.1126/science.1177838. PMID 19797653.
  54. JAKSCH, D.; Zoller, P.. The cold atom Hubbard toolbox. Annals of Physics, 2005, s. 52–79. DOI10.1016/j.aop.2004.09.010.
  55. GLANZ, James. 3 Researchers Based in U.S. Win Nobel Prize in Physics. The New York Times, October 10, 2001. Dostupné online [cit. 2012-05-23].
  56. LIFSHITZ, R.. Nanotechnology and Quasicrystals: From Self-Assembly to Photonic Applications. NATO Science for Peace and Security Series B, 2009, s. 119. DOI10.1007/978-90-481-2523-4_10.
  57. a b c d YEH, Nai-Chang. A Perspective of Frontiers in Modern Condensed Matter Physics. AAPPS Bulletin, 2008. Dostupné online [cit. 2012-03-31].
  58. PRIVMAN, Vladimir. Quantum Computing in Condensed Matter Systems [online]. Clarkson University, [cit. 2012-03-31]. Dostupné online.
  59. AGUADO, M, Cirac, J. I. and Vidal, G. Topology in quantum states. PEPS formalism and beyond. Journal of Physics: Conference Series, 2007, s. 012003. DOI10.1088/1742-6596/87/1/012003.

References

Further reading

  • MUDRY, Christopher. Lecture Notes on Field Theory in Condensed Matter Physics. [s.l.] : World Scientific, 2014. Dostupné online. ISBN 978-981-4449-10-6.
  • KHAN, Abdul Qadeer. Dimensional Anistrophy in Condensed Matter Physics. Seven National Symposium on Frontiers in Physics., 21 November 1998. Dostupné online [cit. 2012-10-21].
  • P. M. Chaikin and T. C. Lubensky (2000). Principles of Condensed Matter Physics, Cambridge University Press; 1st edition, ISBN 0-521-79450-1
  • Alexander Altland and Ben Simons (2006). Condensed Matter Field Theory, Cambridge University Press, ISBN 0-521-84508-4
  • Michael P. Marder (2010). Condensed Matter Physics, second edition, John Wiley and Sons, ISBN 0-470-61798-5
  • Lillian Hoddeson, Ernest Braun, Jürgen Teichmann and Spencer Weart, eds. (1992). Out of the Crystal Maze: Chapters from the History of Solid State Physics, Oxford University Press, ISBN 0-195-05329-X

Šablóna:Physics-footer Šablóna:Good article
Chyba citácie Značky <ref> pre skupinu „notes“ sú prítomné, ale nebola nájdená zodpovedajúca značka <references group="notes"/>