Neutrónová hviezda: Rozdiel medzi revíziami

z Wikipédie, slobodnej encyklopédie
Smazaný obsah Přidaný obsah
Sh66mos (diskusia | príspevky)
dBez shrnutí editace
Sh66mos (diskusia | príspevky)
dBez shrnutí editace
Riadok 1: Riadok 1:
{{Pracuje sa}}
{{Pracuje sa}}
[[Súbor:An isolated neutron star in the Small Magellanic Cloud.jpg|náhľad|Izolovaná neutrónová hviezda (modrá škvrna v strede červeného prstenca) v Malom [[Magellanove mraky|Magellanovom mračne.]]]]
[[Súbor:An isolated neutron star in the Small Magellanic Cloud.jpg|náhľad|Izolovaná neutrónová hviezda (modrá škvrna v strede červeného prstenca) v Malom [[Magellanove mraky|Magellanovom mračne.]]]]
'''Neutrónová hviezda''' je vesmírny objekt s extrémnou hustotou, ktorý vznikne po výbuchu [[supernova|supernovy]]. Je to degenerovaná hviezda z neutrónového plynu a predstavuje záverečné štádium vývoja hmotných [[hviezda|hviezd]] – [[Nadobor|nadobrov]], ktoré dosahujú približne 20-násobok hmotnosti Slnka. V ich vnútri dochádza k postupnej syntéze ľahších prvkov na ťažšie, po vzniku železa exploduje hviezda vo výbuchu supernovy a jej jadro je stlačené do neutrónovej hviezdy s extrémnou hustotou. Myslíme si, že na rozdiel od čiernych dier, či iných hypotetických objektov, ktoré ešte neboli experimentálne potvrdené alebo vyvrátené, sú práve neutrónové hviezdy tímy najmenšími a zároveň najhustejšími objektami vo vesmíre. Pozorované neutrónové hviezdy dosahujú na svojom povrchu približne 6 000 kelvinov. Ich magnetické a gravitačné polia sú miliárdkrát silnejšie ako má Zem. Hmotnosť neutrónových hviezdy je vždy väčšia, ako 1,4 [[hmotnosť Slnka|hmotnosti Slnka]], ale menšia, než 2,4 hmotnosti Slnka. Po prekročení 2,16-násobku hmotnosti Slnka (''Oppenheimerova-Volkoffova medza''), by gravitačný kolaps hviezdy pokračoval až do vzniku objektu s extrémne silnou gravitáciou – [[čierna diera|čiernej diery]]. Podľa súčasných dohadov sa v našej galaxii Mliečna cesta nachádza okolo 30 miliónov neutrónových hviezd, pričom približne 5 % tvoria binárne systémy, kde jednou zo zložiek je neutrónová hviezda alebo čierna diera, pričom druhú zložku tvorí plazmová hviezda, alebo aj ďalšia neutrónová hviezda. Väčšina neutrónových hviezd je však veľmi starých a chladných –keďže žiaria veľmi málo, je ich veľmi ťažké detegovať. Od detekcie blízkej neutrónovej hviezdy [[RX J1856.5−3754|RX J185635-3754]] vďaka Hubbleovmu vesmírnemu teleskopu v 90. rokoch 20. storočia bolo detegovaných niekoľko blízkych neutrónových hviezd, ktoré zjavne emitujú iba tepelné žiarenie.
'''Neutrónová hviezda''' je vesmírny objekt s extrémnou hustotou, ktorý vznikne po výbuchu [[supernova|supernovy]]. Je to degenerovaná hviezda z neutrónového plynu a predstavuje záverečné štádium vývoja hmotných [[hviezda|hviezd]].V ich vnútri dochádza k postupnej syntéze ľahších prvkov na ťažšie, po vzniku železa exploduje hviezda vo výbuchu supernovy a jej jadro je stlačené do neutrónovej hviezdy s extrémnou hustotou. Myslíme si, že na rozdiel od čiernych dier, či iných hypotetických objektov, ktoré ešte neboli experimentálne potvrdené alebo vyvrátené, sú práve neutrónové hviezdy tímy najmenšími a zároveň najhustejšími objektami vo vesmíre. Pozorované neutrónové hviezdy dosahujú na svojom povrchu približne 6 000 kelvinov. Ich magnetické a gravitačné polia sú miliárdkrát silnejšie ako má Zem. Hmotnosť neutrónových hviezdy je vždy väčšia, ako 1,4 [[hmotnosť Slnka|hmotnosti Slnka]], ale menšia, než 2,4 hmotnosti Slnka. Po prekročení 2,16-násobku hmotnosti Slnka (''Oppenheimerova-Volkoffova medza''), by gravitačný kolaps hviezdy pokračoval až do vzniku objektu s extrémne silnou gravitáciou – [[čierna diera|čiernej diery]]. Podľa súčasných dohadov sa v našej galaxii Mliečna cesta nachádza okolo 30 miliónov neutrónových hviezd, pričom približne 5 % tvoria binárne systémy, kde jednou zo zložiek je neutrónová hviezda alebo čierna diera, pričom druhú zložku tvorí plazmová hviezda, alebo aj ďalšia neutrónová hviezda. Väčšina neutrónových hviezd je však veľmi starých a chladných –keďže žiaria veľmi málo, je ich veľmi ťažké detegovať. Od detekcie blízkej neutrónovej hviezdy [[RX J1856.5−3754|RX J185635-3754]] vďaka Hubbleovmu vesmírnemu teleskopu v 90. rokoch 20. storočia bolo detegovaných niekoľko blízkych neutrónových hviezd, ktoré zjavne emitujú iba tepelné žiarenie.


Matematický predpoklad pre čierne a neutrónové hviezdy poskytol už v roku 1930 teoretický fyzik Subrahmanyan Chandrasekhar, neutrónové hviezdy boli však potvrdené až v roku 1967, kedy rádioastronómka Jocellyn Bell Burnelová spolu s Antony Hewisom zachytili rádiový signál od vzdialenej a izolovanej rotujúcej neutrónovej hviezdy – pulzaru ''PSR B1919+21''.
Matematický predpoklad pre čierne a neutrónové hviezdy poskytol už v roku 1930 teoretický fyzik Subrahmanyan Chandrasekhar, neutrónové hviezdy boli však potvrdené až v roku 1967, kedy rádioastronómka Jocellyn Bell Burnelová spolu s Antony Hewisom zachytili rádiový signál od vzdialenej a izolovanej rotujúcej neutrónovej hviezdy – pulzaru ''PSR B1919+21''.

Verzia z 13:57, 16. júl 2021

Izolovaná neutrónová hviezda (modrá škvrna v strede červeného prstenca) v Malom Magellanovom mračne.

Neutrónová hviezda je vesmírny objekt s extrémnou hustotou, ktorý vznikne po výbuchu supernovy. Je to degenerovaná hviezda z neutrónového plynu a predstavuje záverečné štádium vývoja hmotných hviezd.V ich vnútri dochádza k postupnej syntéze ľahších prvkov na ťažšie, po vzniku železa exploduje hviezda vo výbuchu supernovy a jej jadro je stlačené do neutrónovej hviezdy s extrémnou hustotou. Myslíme si, že na rozdiel od čiernych dier, či iných hypotetických objektov, ktoré ešte neboli experimentálne potvrdené alebo vyvrátené, sú práve neutrónové hviezdy tímy najmenšími a zároveň najhustejšími objektami vo vesmíre. Pozorované neutrónové hviezdy dosahujú na svojom povrchu približne 6 000 kelvinov. Ich magnetické a gravitačné polia sú miliárdkrát silnejšie ako má Zem. Hmotnosť neutrónových hviezdy je vždy väčšia, ako 1,4 hmotnosti Slnka, ale menšia, než 2,4 hmotnosti Slnka. Po prekročení 2,16-násobku hmotnosti Slnka (Oppenheimerova-Volkoffova medza), by gravitačný kolaps hviezdy pokračoval až do vzniku objektu s extrémne silnou gravitáciou – čiernej diery. Podľa súčasných dohadov sa v našej galaxii Mliečna cesta nachádza okolo 30 miliónov neutrónových hviezd, pričom približne 5 % tvoria binárne systémy, kde jednou zo zložiek je neutrónová hviezda alebo čierna diera, pričom druhú zložku tvorí plazmová hviezda, alebo aj ďalšia neutrónová hviezda. Väčšina neutrónových hviezd je však veľmi starých a chladných –keďže žiaria veľmi málo, je ich veľmi ťažké detegovať. Od detekcie blízkej neutrónovej hviezdy RX J185635-3754 vďaka Hubbleovmu vesmírnemu teleskopu v 90. rokoch 20. storočia bolo detegovaných niekoľko blízkych neutrónových hviezd, ktoré zjavne emitujú iba tepelné žiarenie.

Matematický predpoklad pre čierne a neutrónové hviezdy poskytol už v roku 1930 teoretický fyzik Subrahmanyan Chandrasekhar, neutrónové hviezdy boli však potvrdené až v roku 1967, kedy rádioastronómka Jocellyn Bell Burnelová spolu s Antony Hewisom zachytili rádiový signál od vzdialenej a izolovanej rotujúcej neutrónovej hviezdy – pulzaru PSR B1919+21.

História objavov

Rýchlo rotujúca neutrónová hviezda (pulzar) v srdci Krabej hmloviny (biela bodka blízko stredu). Objavenie pulzaru J. Cockeom, D. Taylorom a M. Disneyom po niekoľkých rokoch prinieslo odpoveď na otázku, prečo Krabia hmlovina stále tak jasne žiari.

Matematický základ pre samotnú myšlienku existencie čiernych a neutrónových hviezd poskytol už roku 1930 Subrahmanyan Chandrasekhar, ktorý si uvedomil, že pri hranici 1,4-násobku hmotnosti Slnka neexistuje pre bieleho trpaslíka žiadna gravitačná rovnováha (pozri Vznik a fyzikálne vlastnosti). Keďže sa ešte vtedy neuvažovalo o objektoch, ktoré by vznikli po zrútení veľmi hmotných hviezd, teória bola medzi vedeckou komunitou prijatá s veľkou, v niektorých prípadoch až útočnou kritikou na jeho meno. Dnes však vieme, že Chandrasekhar mal pravdu. O niečo neskôr, konkrétne v roku 1934, astronómovia Walter Baade a Fritz Zwicky usúdili, že zrútenie veľmi hmotných hviezd, jav známy ako výbuch supernovy, je spôsobený energiou gravitácie, ktorá sa pri zrútení jadra impulzívne uvoľní.[1] Po tomto zrútení je hviezda stlačená do veľkosti 10 kilometrov a s hustotou zrovnateľnou s hustotou atómového jadra. Hoci na konci 30. rokov 20. storočia boli fyzikálne zákonitosti neutrónových hviezd niekoľkokrát teoreticky potvrdené, ich existencia ostala až do roku 1968 len čisto hypotetická.

Prvé priame pozorovanie neutrónovej hviezdy (RX J1856.5−3754) vo viditeľnom svetle.

V roku 1967 sa študentke na MRAO (Milliard Radio Astronomy Observatory) Jocelyn Bell Burnellovej a vedúcim jej práce Antony Hewishom pri preskúmavaní nočnej oblohy novým rádioteleskopom, náhodne podarilo objaviť zdroj vysielajúci pravidelné pulzy rádiových vĺn v 1,3 sekundových intervaloch – išlo o rádiový signál od vzdialenej a izolovanej neutrónovej hviezdy PSR B1919+21. Neskôr sa takýchto objektov podarilo objaviť viac a každý sa opakoval s pravidelnou periódou – povaha týchto zdrojov, nazývaných ako pulzary, ostala po určitý čas nejasná. Thomas Gold a Franco Pacini navrhli, že oným zdrojom sú rotujúce neutrónové hviezdy.

O rok neskôr vykonávali John Cocke, Don Taylor a Michael Disney pozorovania hviezdy v Krabej hmlovine. Zistili, že hviezda v strede hmloviny bliká 30-krát za sekundu. Objavenie pulzaru v srdci Krabej hmloviny prvý krát preukázalo, že pulzary sú rotujúce neutrónové hviezdy. Objav rýchle točiaceho sa pulzaru vyriešil záhadu, prečo hmlovina stále tak jasne žiari.[1]

V roku 1974 bola Antonymu Hewisovi za jeho hlavnú úlohu v objave pulzarov udelená Nobelova cena, bez Jocelyn Bellovej, ktorá na objave predtým spolupracovala. Don Backer objavil v roku 1982 prvý milisekundový pulzar PSR B1937+21. Rotoval 642-krát za sekundu a po dobu 24 rokov ostal do objavu pulzaru PSR J1748-2446ad (rotujúci viac ako 700-krát za sekundu) najrýchlejšie rotujúcim milisekundovým pulzarom.

V roku 2019 sa vedcom podarilo objaviť najhmotnejšiu neutrónovú hviezdu – J0740+6620. Ide o pulzar, ktorý je súčasťou binárneho systému, dvojhviezdy s bielym trpaslíkom. Hmotnosť J0740+6620 bola určená na 2,14 násobok hmotnosti Slnka, čo je veľmi tesne k teoretickej hornej hranici hmotnosti neutrónových hviezd.[2]

Vznik

Zjednodušený proces vzniku neutrónovej hviezdy. Horný riadok – vonkajšie vrstvy masívnej hviezdy sa začnú rútiť na vnútorné jadro, čím vzniká rázová vlna. Stredný riadok –  hmota klesajúcich vrstiev sa stláča, čo spôsobí výbuch neutrín a zahreje plyn vo vnútri. Spodný riadok – hviezda vybúcha ako supernova, vzniká silná rázová vlna, ktorá odhodí vonkajšie vrstvy rýchlosťou až 20 000 kilometrov za sekundu. Z jadra vznikne neutrónová hviezda.

Tlak, ktorý vďaka jadrovej syntéze vytvára hviezdne jadro spaľovaním vodíka na hélium, v niektorých prípadoch aj na ťažšie prvky, udržuje po niekoľko miliárd rokov hviezdu v gravitačnej rovnováhe. Pri ubúdaní prvkov v jadre hviezdy sa reakcie zrýchľujú, veľkosť a žiarenie hviezdy sa zvyšuje a jej životnosť sa začína krátiť. V prípade hviezd typu hlavnej postupnosti vrátane nášho Slnka, budú jej jadrové reakcie pokračovať do chvíle, kým sa v jadre minie zásoba vodíka a hélia-teda prvkov, ktoré hviezda potrebuje na priebeh fúzie. Keďže už nevie vytvoriť tlak, ktorý by smerom z jadra vzdoroval gravitačnému tlaku z vonkajška hviezdy, horná plynná vrstva sa odhodí v podobe planetárnej hmloviny a k jadru začnú prepadať tlaky, ktoré ho zmenšia na teleso, ktoré nazývame biely trpaslík. Na rozdiel od iných hviezd vo vesmíre, sú práve biely trpaslíci telesami, ktoré by vedeli ostať v gravitačnej rovnováhe nekonečne dlho, pretože ich náhodný pohyb častíc nezávisí na teplote plynu v ich jadre. To teda znamená, že keď sa biely trpaslíci ochladzujú a vyžarujú termálnu energiu, nezmršťujú sa a nestrácajú ani oporu v tlaku. Tlak, ktorý gravitačne udržuje bielych trpaslíkov, sa nazýva degeneratívny tlak, ktorý zapríčiňuje kvantovo mechanický efekt- Pauliho vylučovací princíp. Vylučovací princíp tvrdí, že dve rovnaké častice nemôžu mať rovnakú hybnosť a ani polohu zároveň[1]- zabraňuje tak fermiónom- elementárnym časticiam známej hmoty- aby sa nachádzali blízko seba a aby mali súčasne rovnaké rýchlosti. Keď sa fermióny k sebe približujú, vylučovací princíp ich núti k veľkým rýchlostiam, ktorý odoláva silnému stláčaniu a vzniká tak degenerovaný plyn, ktorý udržuje bieleho trpaslíka v gravitačnej rovnováhe-hviezda sa môže stať bielym trpaslíkom, keď jej elektróny zdegenerujú a stlačia sa na hustotu miliónkrát vyššiu, ako je hustota vody. Keď sa hmotnosť bielych trpaslíkov zvyšuje, náhodné rýchlosti spôsobené degeneráciou sa zvyšujú spolu s touto veličinou a dosahujú rýchlosti blížiacich sa rýchlosti svetla. V roku 1930 si mladý indický teoretický fyzik Subrahmanyan Chandrasekhar uvedomil, že pri bielych trpaslíkov hmotnosti vyššej ako 1,4 násobok Slnka,[1] neexistuje gravitačná rovnováha, pretože pri zvyšovaní rýchlosti elektrónov blížiacich sa rýchlosti svetla oslabuje odolnosť degenerovaného plynu, schopnosť odolávať stláčaniu gravitácie. Vďaka tomu by sa biely trpaslík, s hmotnosťou presahujúcu Chandrasekharovu medzu gravitačne zrútil za ani nie sekundu. Pri výbuchu supernovy, zväčša typu II alebo aj Ic či Ib, prepadnú k bielemu trpaslíkovi silné tlaky, ktoré začnú stláčať elektróny blízko atómového jadra. Tie pri silných tlakoch narazia do protónov, ktoré sa rozpadnú na ďalšie neutróny a prakticky celý priestor atómu vyplnia tieto častice, čo vedie k neuveriteľnej hustote, ktorá dosahuje vyššie hodnoty než 1014 g/cm3. Z jadra začína vznikať pozostatok hviezdy, ktorý je prakticky tvorený len neutrónmi (z toho aj názov neutrónová hviezda).

Fyzikálne vlastnosti

Teplota a hmotnosť

V súčasnosti vieme, že veľmi hmotné hviezdy v priebehu ich hviezdneho života môžu strácať malý zlomok svojej hmotnosti vďaka silným hviezdnym vetrom a preto hviezdy mierne ťažšie ako 1,4 násobok Slnka môžu pravdepodobne skončiť ako biely trpaslíci. Pre bieleho trpaslíka s hmotnosťou vyššou ako 1,4 násobok Slnka však gravitačná rovnováha neexistuje- minimálna hmotnosť neutrónovej hviezdy sa teda pohybuje v rozmedzí 1,4 násobku slnečnej hmotnosti až po hornú hranicu jej hmotnosti-Oppenheimerova-Volkoffova medzu-, kde by gravitačný kolaps bieleho trpaslíka nevyhnutne pokračoval do vzniku čiernej diery. Limit pre hornú hranicu hmotnosti neutrónových hviezd sa všeobecne pohybuje okolo 2,3 M☉, hoci podľa nedávnych objavov je to približne 2,4-2,5 M☉ slnečnej hmotnosti. Vychádza sa totiž z údaju, že hmotnosť väčšiny pozorovaných neutrónových hviezd je 2,14M☉. I keď sa predpokladá, že za hranicou 2,4 M☉ nastane gravitačný kolaps ďalej pokračujúci do vzniku čiernej diery, najmenšia hmotnosť pozorovaných čiernych dier je 5 M☉. Medzi 2,4M☉ a 5M☉ boli navrhnuté rôzne hypotetické hviezdy a objekty (napr. kvarkové hviezdy) a hoci kandidáti existujú, stále sa ich existencia nepotvrdila. Teploty vo vnútri novovzniknutej neutrónovej hviezdy dosahujú okolo 1011 do 1012 K.[3] V priebehu niekoľkých rokov však žiarenie prostredníctvom emitovania neutrín a fotónov rapídne klesne zhruba na 106 K. Pri tejto prechádza žiarenie emitované neutrónovou hviezdou prevažne do röntgenovej oblasti elektromagnetického spektra, v ktorej žiari väčšina neutrónových hviezd v pozorovateľnom vesmíre.

Gravitačné a magnetické pole
Gravitačná výchylka svetla na neutrónovej hviezde. Vďaka relativistickému vychýleniu svetla je viditeľná viac ako polovica povrchu.

Gravitačná sila priemernej neutrónovej hviezdy dosahuje vysoké hodnoty- gravitačné pole neutrónovej hviezdy je približne 2000 krát silnejšie ako má Zem.[4] Z teórie relativity vyplýva, že objekt s veľmi silným gravitačným poľom bude ohýbať svetelné lúče a vytvárať tak (gravitačnú) šošovku. To sa deje aj pri neutrónovej hviezde, kde silné gravitačné pole ohýba fotóny emitované neutrónovou hviezdou tak, aby boli viditeľné časti bežne neviditeľného zadného povrchu.[5] Ak je polomer neutrónovej hviezdy 3GM / c2 (kde GM znamená súčin gravitačnej konštanty a hmotnosti telesa, a c2 znamená druhú mocninu rýchlosti svetla) alebo aj menej, fotóny môžu byť zachytené na obežnej dráhe, vďaka čomu sa zviditeľní celý povrch tejto neutrónovej hviezdy z jediného východného, pozorovaného bodu. Pri vystavení silnej gravitačnej sile, akú dosahuje neutrónová hviezda, by sa objekt ešte pred pádom na povrch takmer okamžite roztiahol na dlhý pás materiálu- jav (neodborne) nazývaný ako špagetizácia. Ak by sme položili objekt na povrch neutrónovej hviezdy, zväčšila by sa veľkosť gravitačnej sily pôsobiacej na jeho hmotnosť, čím by sa zmenila aj tiaž- v gravitačnom poli neutrónovej hviezdy by vážil až 7 miliárd ton.

Neutrónové hviezdy, ktorých magnetické pole dosahuje 108-1011 T (pre porovnanie – magnetické pole Zeme dosahuje len 0,0000305 tesla) sú všeobecne známe ako magnetary, ktoré sa stali prijímanou hypotézou na vysvetlenie mäkkých gama opakovačov (SGR) a anomálne röntgenové pulzary (AXP). Ich magnetické pole spôsobuje "rozpad" kôry neutrónovej hviezdy, pričom tento rozpad sprevádzajú krátke, mohutné svetelné záblesky žiarenia gama a uvoľňuje sa obrovské množstvo energie. Magnetar SGR 1806-20 uvoľnil pri výbuchu, ktorý trval 1/10 sekundy, viac energie ako Slnko za posledných 100 000 rokov.[6] Magnetické pole magnetarov by už zo vzdialenosti 1000 km dokázalo deformovať elektrónové obaly atómov živej hmoty, čím by v dôsledku narušenia biochemických procesov zapríčinilo smrť živých organizmov. [7] Vznik takého silného poľa je ešte stále nejasný, no jedná z hypotéz tvrdí, že počas tvorby neutrónovej hviezdy sa zachoval magnetický tok materskej hviezdy, čo malo za následok zosilnenie magnetického poľa vo výsledku procesu.[8] Táto hypotéza však úplne nevysvetľuje intenzitu magnetického poľa neutrónových hviezd.[8] Iné teórie vznik magnetického poľa vysvetľujú jednoducho ako gravitačné zrútenie hviezd s neobvykle silným magnetickým poľom vo vesmíre.

Hustota a vnútorná štruktúra
Prierez neutrónovou hviezdou.

Podrobné zloženie a aj samotná štruktúra neutrónových hviezd predstavuje ešte stále veľký otáznik. Podrobnejší obraz o vnútri sme si vytvorili podľa presného štúdia zmien rýchlosti otáčania neutrónovej hviezdy, alebo (ako nám neskôr umožnili vesmírne röntgenové teleskopy) podľa priameho určenia súvislostí medzi hmotnosťou a jej polomerom pomocou merania vyžarovaného spektra z povrchu. Prierez neutrónovou hviezdou by vyzeral veľmi podobne ako rez štruktúrou Zeme-začali by sme plášťom, pokračovalo by tekuté vnútro a pravdepodobne aj pevné jadro.[1] Celková hustota neutrónových hviezd je približne 5,9 x 1017 kg/m3 (4,1 × 1014 násobok hustoty Slnka), pričom hustota atómového jadra je 3 × 1017 kg / m3. Vonkajší plášť by mal byť tvorený zo železa, ale pri čoraz vyšších hustotách, ktoré dosahujú hodnoty 6 × 1017 kg/m3, by sa mali hlbšie vyskytovať neobyčajné jadra bohaté na neutróny-ku príkladu jadrá z niklu, kryptónu či germánia – ktoré by boli usporiadané v kryštalickej štruktúre.[1] Hlboko pod plášťom hustota dosahuje až 1014 gramov na centimeter kubický. Za týchto podmienok sa hmota vyskytuje prevažne v podobe voľných neutrónov, ktoré vykazujú vlastnosti analogické tekutému héliu na Zemi pri teplotách blížiacich sa ku absolútnej nule. Priamo v jadre, kde je hustota niekoľko krát vyššia ako 1014 g/cm3 , platia neznáme fyzikálne mechanizmy. Predpokladá sa, že v jadre sa nachádza ten najhustejší materiál vo vesmíre, miliárd krát hustejší ako železo. Podľa iných, stále kontroverznejších variant, sa v jadre nachádzajú tzv. podivné kvarkové hrudky-pevné látky zložené z neviazaných protónov, neutrónov a ďalších elementárnych častíc.[1]

Binárne systémy

Približne 5% zo všetkých neutrónových hviezd v našej galaxii tvoria binárne systémy, kde druhú zložku tvorí biely trpaslík, čierna diera, červený obor, alebo aj ďalšia neutrónová hviezda. Dvojhviezdy, kde obe zložky obsahujú neutrónové hviezdy alebo neutrónovú hviezdu v binárnom systéme spolu s čiernou dierou, boli pozorované prostredníctvom gravitačných vĺn.

Circinus X-1 - röntgenový binárny systém, ktorý obsahuje neutrónovú hviezdu.

Röntgenový binárny systém s nízkou hmotnosťou

Röntgenový binárny systém s nízkou hmotnosťou (LMXB-Low-mass X-ray binary) sú binárne systémy, kde jedna zložka je neutrónová hviezda alebo čierna diera, pričom druhá zložka (darca) je menej hmotným objektom-zvyčajne ide o plazmovú hviezdu (červený obor alebo biely trpaslík). LMXB systémy emitujú väčšinu svojho žiarenia prostredníctvom röntgenových lúčov, ktoré sú emitované horúcim plynom, ktorý sa prostredníctvom akrécie (akréčny disk okolo kompaktného objektu je najjasnejšou časťou LMXB[9]) dostáva z druhej zložky na povrch neutrónovej hviezdy, alebo začne rotovať okolo gravitačného pôsobenia čiernej diery. LMXB systémy patria medzi tie najjasnejšie objekty na röntgenovej oblohe, no približne menej ako jedno percento žiarenia je emitované vo viditeľných vlnových dĺžkach. V Mliečnej ceste bolo zistených približne dvesto takýchto binárnych systémov.

Medzihmotný röntgenový binárny systém Medzihmotný röntgenový binárny systém (IMXB-Intermediate-mass X-ray binary) je binárny systém, ktorý pozostáva z neutrónovej hviezdy alebo čiernej diery a druhú zložku tvorí hviezda strednej hmotnosti (polovica hmotnosti Slnka). Sú pôvodom röntgenového systému s nízkou hmotnosťou.

Vysoko-hmotný röntgenový binárny systém

Vysoko-hmotný röntgenový binárny systém (HMXB-High-mass X-ray binary) je typom binárneho systému, ktorý obsahuje veľmi hmotné hviezdy- zvyčajne ide o hviezdy typu O až B, ktorých hmotnosť sa pohybuje od 2,1-16 M alebo viac a druhá zložka predstavuje kompaktný objekt-čiernu dieru alebo neutrónovú hviezdu, ktorá je dominantná emisiou röntgenových lúčov. Hmotná hviezda je veľmi jasná, pretože je dominantná emisiou optického svetla (žiarenie, ktoré zahrňuje oblasti ultrafialového žiarenia-UV, infračerveného žiarenia- IR a viditeľného svetla- VIS[10]) a dajú sa ľahko rozoznať. Asi najznámejším príkladom HMXB systému je Cygnus X-1-prvý kandidát na čiernu dieru.

Mikrokvazar

Kvazar je kompaktná oblasť v strede masívnej galaxie, obklopujúca supermasívnu čiernu dieru. Mikrokvazar (niekedy aj röntgenový binárny systém emitujúci rádiové vlny) je sústava normálnej hviezdy a kompaktného objektu- čiernej alebo neutrónovej hviezdy. Ich názov je odvodený z kvazarov, pretože majú niektoré spoločné vlastnosti: premenlivé a silné rádiové vyžarovanie, jasný akréčny disk, ktorý obklopuje kompaktný objekt. Naopak, u kvazarov, kde supermasívna čierna diera dosahuje hmotnosť miliónov Sĺnk, kompaktný objekt v mikrokvazaroch má hmotnosť len niekoľko M. V dôsledku trenia sa môže akréčny disk zohriať na tak vysokú teplotu, že začne emitovať röntgenové lúče.[11]

Referencie

  1. a b c d e f g BEGELMAN, REES, Mithchell. Osudová přitažlivost gravitace. Martin : Argo, 2010. ISBN 978-80-257-0806-4.
  2. Časopis Quark (RNDr. Zdeněk Komárek): Najhmotnejšia neutrónová hviezda https://www.quark.sk/najhmotnejsia-neutronova-hviezda/
  3. Lattimer, James M. (2015). "Introduction to neutron stars". American Institute of Physics Conference Series. AIP Conference Proceedings. 1645 (1
  4. Green, Simon F.; Jones, Mark H.; Burnell, S. Jocelyn (2004). An Introduction to the Sun and Stars
  5. Zahn, Corvin (1990-10-09). "Tempolimit Lichtgeschwindigkeit
  6. Neutron Stars, Pulsars, and Magnetars - Introduction [online]. imagine.gsfc.nasa.gov, [cit. 2021-06-20]. Dostupné online.
  7. Sky & Telescope [online]. 2005-11-18, [cit. 2021-06-20]. Dostupné online. (po anglicky)
  8. a b Reisenegger, A. (2003). "Origin and Evolution of Neutron Star Magnetic Fields"
  9. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition) - Q. Z. Liu, J. van Paradijs, and E. P. J. van den Heuvel (str. 1)
  10. What is optical radiation? [online]. Federal Office for Radiation Protection, [cit. 2021-07-11]. Dostupné online. (po anglicky)
  11. Microquasars in the Milky Way [online]. www.nrao.edu, [cit. 2021-07-11]. Dostupné online.

Iné projekty