Integrál

z Wikipédie, slobodnej encyklopédie
Prejsť na: navigácia, hľadanie

Integrál je spolu s deriváciou najdôležitejší pojem matematickej analýzy. Pojem integrálu je zovšeobecnením pojmov ako plocha, objem, súčet či suma. Integrovanie je opačná operácia k derivovaniu.

Neurčitý integrál[upraviť | upraviť zdroj]

Definícia: Funkcia F sa nazýva primitívna funkcia k funkcii f na otvorenom intervale I, ak platí F' = f na intervale I.

\int {f(x)}\, \mathrm{d}x = F(x) + c.

Hľadanie neurčitého integrálu (primitívnej funkcie) je opačný proces k určovaniu derivácie. Pri výpočte sa vychádza zo známych integrálov (tzv. tabuľkové integrály) a využíva sa lineárnosť, metóda per partes a substitučná metóda.

Názorné vysvetlenie[upraviť | upraviť zdroj]

Integrál ako plocha pod krivkou.

Jednoducho povedané, určitý integrál nezápornej funkcie f(x) medzi nejakými dvoma bodmi a, b je rovný ploche obrazca ohraničeného priamkami x = a, x = b, osou x a krivkou definovanou funkciou f. Formálnejšie povedané, taký integrál je rovný miere množiny S definovanej ako

S= \{(x,y) \in \mathbb{R}^2:a \leq x \leq b ,0 \leq y \leq f(x)\}.

Integrál sa označuje štylizovaným pretiahnutým písmenom ſ (tzv. dlhé s; z lat. ſumma, summa). Toto značenie zaviedol matematik Gottfried Leibniz.

Integrál opísaný v predchádzajúcom odseku by sa zapísal ako \begin{matrix}\int^b_af(x)\,\mathrm{d}x\end{matrix}, kde znak \begin{matrix}\int\end{matrix} označuje integrovanie, a a b sú integračné medze (len pri určitom integrále), dx označuje premennú, podľa ktorej sa integruje (pôvodne označovalo infinitezimálnu hodnotu, ale dnes slúži len ako rýdzo symbolické označenie bez ďalšieho významu).

Tabuľkové integrály[upraviť | upraviť zdroj]

\int {0} \,\mathrm{d}x = c
\int {x^n} \,\mathrm{d}x = \frac{x^{n+1}}{n+1} + c ; n \in \R -\lbrace -1\rbrace
\int {\frac{1}{x}} \,\mathrm{d}x = \ln |x| + c
\int {a^x} \,\mathrm{d}x = \frac{a^x}{\ln a} + c ; a \in {\R}^{+} - \lbrace 1 \rbrace
\int {e^x} \,\mathrm{d}x = e^x + c
\int {\sin x} \,\mathrm{d}x = -\cos x + c
\int {\cos x} \,\mathrm{d}x = \sin x + c
\int {\frac{1}{\sin^2 x}} \,\mathrm{d}x = -\operatorname{cotg} \,x + c
\int {\frac{1}{\cos^2 x}} \,\mathrm{d}x = \operatorname{tg} \,x + c
\int {1} \,\mathrm{d}x = x + c

Presnejšia definícia[upraviť | upraviť zdroj]

Existuje veľa definícií integrálu, ktoré pre rozumne správajúce sa funkcie vedú k rovnakým výsledkom. Z nich najdôležitejšie sú Riemannov integrál a Lebesgueov integrál.

Riemannov integrál navrhol Bernhard Riemann roku 1854 a išlo o prvú definíciu integrálu zodpovedajúcu dnešným pomerom. Lebesgueov integrál vytvoril Henri Lebesgue. Lebesgueov integrál a ďalšie, ešte pokročilejšie integrály, umožňujúce integrovať širšie triedy funkcií, platia pre ne silnejšie verzie mnohých tvrdení a poskytujú mnohé výhody. Patrí sem napríklad Kurzweilov integrál.

Komplexný integrál[upraviť | upraviť zdroj]

V komplexných číslach sa spravidla používajú krivkové integrály. Ak tieto integrály prebiehajú po uzavretej krivke v komplexnej rovine, potom je spravidla možné ich spočítať pomocou reziduálnej vety, Cauchy-ovho vzorca alebo Cauchy-ovej vety.