Szemerédiho veta
Vzhľad
Szemerédiho veta hovorí, že každá podmnožina prirodzených čísel s kladnou hornou asymptotickou hustotou obsahuje konečné aritmetické postupnosti ľubovoľnej dĺžky. Szemerédiho veta zovšeobecňuje van der Waerdenovu vetu.
História
[upraviť | upraviť zdroj]Tvrdenie Szemerédiho vety navrhol ako zaujímavú hypotézu Paul Erdős a Paul Turán v roku 1936.
História postupného dokazovania Szemerédiho vety sa odvíja od maximálnej dĺžky konečných aritmetických podpostupností, ktoré predchodcovia Szemerédiho vety v podmnožine prirodzených čísel garantovali.
- Prípady a , teda tvrdenia garantujúce existenciu jedno a dvojprvkových postupností sú triviálne, pretože ľubovoľné číslo alebo ľubovoľná dvojica čísel tvorí triviálnu konečnú aritmetickú postupnosť.
- Prípad zodpovedal pozitívne Klaus Roth v roku 1956.
- Prípad pozitívne zodpovedal Endre Szemerédi v roku 1969.
- V roku 1972 prípad vyriešil aj Roth použijúc metódu podobnú tej, ktorou predtým vyriešil prípad .
- Pre ľubovoľné tvrdenie nakoniec dokázal Szemerédi v roku 1975.
- V roku 1977 podal Hillel Furstenberg doležitý alternatívny dôkaz Szemerédiho vety založený na ergodickej teórii.
- V roku 2001 podal Timothy Gowers iný alternatívny dôkaz.