Konkávna funkcia: Rozdiel medzi revíziami

Skočit na navigaci Skočit na vyhledávání
Pridaných 465 bajtov ,  pred 13 rokmi
+text
d (Nahrádzam stránku textom 'Funkcia je konvexná (konkávna) v intervale $ (a,b) $, ak jej graf je "otvorený nahor (nadol)". {{matematický výhonok}} Kategória:Matematika')
(+text)
Ak má [[funkcia]] f(x) [[dotyčnica|dotyčnicu]] na [[interval]]e [A,B], resp. v hraničných [[bod (geometria)|bodoch]] [A,B] má dotyčnice sprava alebo zľava, potom funkcia f(x) je konkávna na intervale [A,B] ak pre každú dotyčnicu leží graf pod dotyčnicou.
Funkcia je konvexná (konkávna) v intervale $ (a,b) $, ak jej [[graf]] je "otvorený nahor (nadol)".
 
 
Ak funkcia f(x) je [[spojitá funkcia|spojitá]] na intervale [A,B] a nech má pre každý vnútorný bod intervalu [A, B] zápornú druhú [[derivácia|deriváciu]], potom je funkcia na intervale [A,B] konkávna.
 
 
Funkcia je konvexná (konkávna) v intervale $ (a[A,b) $B], ak jej [[graf]] je "otvorený nahor (nadol)".
 
 
{{matematický výhonok}}

Navigačné menu