Antihmota

z Wikipédie, slobodnej encyklopédie
Prejsť na: navigácia, hľadanie
Obrovský oblak antihmoty rozprestierajúci sa 3000 ly nad jadrom Galaxie. Snímka vznikla na základe pozorovaní orbitálneho observatória Compton GRO. Tento oblak antihmoty je príkladom zriedkavého výskytu väčšieho množstva antihmoty vo vesmíre. Antihmota spravidla nemá dlhú životnosť, pretože rýchlo anihiluje s časticami koinohmoty.

Antihmota je časť hmoty, ktorá je zložená z antičastíc (napríklad antiprotónov a pozitrónov), namiesto častíc (protónov a elektrónov). Každá častica obyčajnej hmoty má svoju antičasticu. Preto hovoríme, že antihmota je zrkadlovým obrazom tzv. koinohmoty, čo je hmota, z ktorej sme tvorení my a veci okolo nás.

Častice antihmoty majú opačný elektrický náboj než častice hmoty, pričom hmotnosť a spin sú rovnaké. Vplyv napr. gravitácie je rovnaký ako u bežnej hmoty. Hmotu aj antihmotu radíme k žiarivej hmote, pretože je schopná vyžarovať (aj odrážať) elektromagnetické žiarenie. Pri stretnutí hmoty s antihmotou sa môžu nastať dve rôzne udalosti. Môže dôjsť k pružnému (elektrickému) rozptylu, pri ktorom sa obe častice rozptýlia rôznymi smermi. V druhom prípade dôjde k nepružnému rozptylu: Vzniká častica zvaná mezón. Táto častica je veľmi nestabilná a existuje len zlomok sekundy, kým nedôjde k anihilácii. Anihilácia je proces, pri ktorom obe formy hmoty zaniknú a premenia sa na iné formy energie (častice poľa, typicky napr. fotóny) v súlade s rovnicou E = mc², alebo vzniknú častice hmoty a antihmoty identické s pôvodným párom.

Vznik a výskyt[upraviť | upraviť zdroj]

Antičastice vznikajú v prírode bežne materializáciou z kozmického žiarenia. Majú však spravidla krátku životnosť, lebo rýchle anihilujú s okolitou hmotou vesmíru. Hviezdy, galaxie, ani iné objekty tvorené antihmotou neboli pozorované. Anihilácia hmoty s antihmotou sa považuje za jednu z možných príčin vzniku zábleskov gama žiarenia (GRB). V počiatočných štádiách Veľkého tresku vznikali veľké množstvá hmoty a antihmoty. Všetka vzniknutá antihmota však anihilovala s väčšou časťou hmoty. Vedci dodnes nevedia presne vysvetliť, prečo nastala nesymetria vo vzniknutých množstvách hmoty a antihmoty a prečo prevážila hmota. Vďaka tejto nesymetrii sa vo vesmíre nachádza hmota.

Detekcia antihmoty je ťažká, nakoľko sa na prvý pohľad v ničom neodlišuje od koinohmoty. Je možné pozorovať ju len v prípade, že anihiluje s okolitou hmotou a to na základe anihilačných gama čiar (0,5 MeV pri anihilácii elektrónu a pozitrónu, 938 MeV pri anihilácii protónu a antiprotónu). Teoreticky je možné identifikovať aj neanihilujúcu antihmotu na základe spektra jej žiarenia, to však zatiaľ zostáva nad našimi pozorovacími možnosťami.

Antihmotu možno vyrobiť aj umelo v urýchľovačoch častíc, ide však o energeticky veľmi náročný proces. V urýchľovači CERN v Ženeve a vo Fermiho laboratóriu v Chicagu sa podarilo z antičastíc vytvoriť atómy antivodíka. V ich jadrách sú záporné antiprotóny, ktoré obiehajú kladné pozitróny.

Význam[upraviť | upraviť zdroj]

Nakoľko je antihmota najsilnejším známym zdrojom energie, uvoľňuje energiu so stopercentnou účinnosťou (jadrové štiepenie je účinné iba na 1,5 %).[chýba zdroj] Antihmota nespôsobuje znečistenie ani radiáciu a jedna jej kvapka by mohla zásobovať New York energiou celý deň.[chýba zdroj]

V súčasnosti sú možnosti využitia antihmoty veľmi malé. Jej umelá produkcia je energeticky veľmi náročná a neefektívna. Využíva sa pri nej zrážka častíc s vysokou energiou. Pri produkcii antiprotónov sa využívajú urýchľovače protónov, ktoré urýchlia protóny na rýchlosti blízke rýchlosti svetla a tieto urýchlené protóny dopadajú na terče z ťažkých jadier, pričom okrem množstva iných častíc vznikajú páry hmoty a antihmoty. Na vznik jedného antiprotónu takouto metódou je však potrebných 105 protónov. Na produkciu jedného gramu antihmoty je potrebné dodať energiu 1,16x1021 J/g, preto sa v súčasnosti touto metódou ročne produkuje iba približne 10 nanogramov antihmoty.[1]

Skladovanie[upraviť | upraviť zdroj]

Keďže všetka antihmota na Zemi okamžite reaguje s hmotou, je potrebné držať tieto záporne nabité častice vo vákuu, aby nedošlo k žiadnemu kontaktu s iným materiálom vrátane vzduchu. Ak dôjde ku kontaktu, nastáva anihilácia. Keďže na antihmotu tiež pôsobí gravitácia a prirodzene klesá ku dnu akejkoľvek nádoby, ani úplne uzavretá vákuovaná nádoba nie je riešenie na jej uskladnenie. V súčasnosti sa elektricky nabité častice antihmoty udržujú mimo dosah hmoty v tzv. magnetickej pasci. Antihmota v magnetickej pasci však môže mať hustotu len po určité hraničné hodnoty, preto je to neefektívne využitie priestoru.

Na uskladnenie antihmoty sa môže využiť aj Penningova pasca, vákuová nádoba, ktorá drží častice v kmitavom pohybe radiálne pomocou magnetického poľa a axiálne pomocou elektrického poľa a tým zabraňujú kontaktom s nádobou. Na umiestnenie do tohto zariadenia je však potrebné antiprotóny ochladiť na veľmi nízku teplotu. Prítomnosť a vlastnosti antihmoty v nej je možné zisťovať pomocou lasera.[chýba zdroj]

Magnetické pasce aj Penningove pasce umožňujú skladovať len elektricky nabité častice antihmoty. Výroba a skladovanie neutrálnych častíc, atómov antivodíka, je ešte zložitejšia. Na druhej strane je výhoda neutrálneho antivodíka v tom, že by ho bolo možné skladovať pri menšom objeme a väčšej hustote.

Referencie[upraviť | upraviť zdroj]

  1. WAGNER, Vladimír. Jaderné zdroje pro vesmírnou kolonizaci. KOZMOS, 2008, roč. XXXIX, čís. 4, s. 25.

Iné projekty[upraviť | upraviť zdroj]