Metrický priestor
Metrický priestor je matematická štruktúra, ktorá na danej neprázdnej množine umožňuje zadefinovať pojem vzdialenosti. Pozostáva z neprázdnej základnej množiny X a funkcie d, nazývanej metrika na X, ktorá každej dvojici bodov zo základnej množiny X priraďuje ich vzdialenosť, pričom sú pre ňu splnené isté podmienky. Metrický priestor sa definuje ako usporiadaná dvojica . Na jednej základnej množine môže byť definovaných aj viacero metrík, preto metrický priestor nie je svojou základnou množinou jednoznačne určený.
Motiváciou pre štúdium metrických priestorov je snaha o vystihnutie podstaty konceptov konvergencie a spojitosti a ich zovšeobecnenie z oborov reálnych alebo komplexných čísel do ľubovoľného oboru, ktorý tvorí metrický priestor.
Metrické priestory umožňujú okrem iného dobre definovať pojem otvorenej a uzavretej množiny. Tieto sa potom využívajú pri ďalšom zovšeobecnení - topologických priestoroch, na ktorých nie je definovaná vzdialenosť medzi dvoma bodmi, ale len trieda otvorených podmnožín, spĺňajúca isté základné podmienky vyplývajúce z teórie metrických priestorov.
Definícia
[upraviť | upraviť zdroj]Metrický priestor je usporiadaná dvojica , kde X je neprázdna množina a d je zobrazenie na usporiadaných dvojiciach prvkov X, nazývané metrika na X, pre ktoré sú splnené nasledujúce podmienky:
- a .
- (symetria).
- (trojuholníková nerovnosť).
Zdroj
[upraviť | upraviť zdroj]- Simmons, G. F.: Introduction to Topology and Modern Analysis. McGraw-Hill, 1963.
Externé odkazy
[upraviť | upraviť zdroj]- FILIT – zdroj, z ktorého pôvodne čerpal tento článok.
- Metrické priestory