Hausdorffova miera alebo Hausdorffova dimenzia alebo Hausdorffova-Besicovitchova dimenzia je, v matematike, nezáporné reálne číslo priradené nejakému metrickému priestoru. Hausdorffova miera generalizuje predstavu priestoru ako skutočného vektorového priestoru. Hausdorffova miera v v Euklidovskom priestore v jednom bode je nula, miera riadku je jedna ... miera fraktálu nadobúda číslo s desatinnými hodnotami. Existuje veľa priestorov, pre ktoré môže byť miera prirodzené číslo, ale tiež môže byť racionálne alebo iracionálne číslo. Táto koncepcia bola predstavená v roku 1918, matematikom Felixom Hausdorffom.
Hausdorffova miera (ďalej označená ) je "dolnodimenzionalnou" mierou na , ktorá nám dovoľuje merať isté „veľmi malé“ podmnožiny . Základnou myšlienkou je, že množina je "s-dimenzionálna" podmnožina množiny , kde platí
, i keď je veľmi komplikovaná. je definovaná ako výraz, ktorý obsahuje súčet priemerov dobrého mnohopočtného pokrytia.
Definícia: Nech definujeme:
kde
túto
je obyčajná gamma funkcia.
Pro a s vlastnosťami ako vyššie, definujeme:
nazývame s-dimenzionálnou Hausdorffovou mierou na .
je Borelova regulárna miera pre , nie je ale Radonova miera.
Z toho vyplýva toto:
je miera.
je miera.
je Borelova miera.
Ďalšie zaujímavé vlastnosti:
je čítacia miera.
na , kde je Lebesgueova miera.
na pre všetky .
pre všetky .
pre všetky afinné izometrie .
- Steven G. Krantz: Measure Theory and Fine Properties of Functions, CRC Press LLC, London 2000, ISBN 0-8493-7157-0.