Stavová veličina

z Wikipédie, slobodnej encyklopédie
Skočit na navigaci Skočit na vyhledávání

Stavová veličina alebo veličina kvality je veličina charakterizujúca stav sústavy. Vo fyzike sa stavové veličiny vyskytujú v termodynamike v súvislosti s opisom plynov, albo tiež magnetických vlastností látok.

Termodynamika[upraviť | upraviť kód]

Dôležitou súčasťou našich vedomostí o sústave je tzv. stavová rovnica, ktorá navzájom spája niektoré stavové veličiny daného systému. Príkladom je stavová rovnica ideálneho plynu

.

Stavové veličiny sa delia v závislosti na ich zmene so zmenou rozlohy skúmaného systému na:[1]

  1. Intenzívne stavové veličiny, ktorých hodnota nezávisí od veľkosti systému a je ich možné určiť pre každý bod systému. Vyjadrujú bodovú vlastnosť látky v systéme. Patrí sem napríklad:
  2. Extenzívne stavové veličiny, ktorých hodnota závisí priamo úmerne na veľkosti systému. vyjadrujú vlastnosť systému. Patrí sem napríklad:

Z iného hľadiska sa stavové veličiny delia na:[1]

  1. Referenčné (základné) veličiny, pri ktorých možno určiť ich absolútnu hodnotu. Patrí medzi ne napríklad teplota.
  2. Energetické funkcie, pri ktorých nie je známa ich absolútna hodnota, určuje sa ich zmena k vhodne zvolenému referenčnému stavu. Patria sem napríklad voľná energia a entalpia.
  3. Odvodené veličiny, ktoré sa určujú z veličín predošlých skupín matwematickými operáciami, najčastejšie deriváciou. Patrí sem na príklad merná tepelná kapacita.

Nezávislosť od dráhy (histórie)[upraviť | upraviť kód]

Aby sa fyzikálna veličina mohla nazývať stavovou, nesmie závisieť od dráhy – teda od toho, akým spôsobom sa systém dostane zo začiatočného stavu do stavu koncového. S ohľadom na túto podmienku môžeme povedať, že napríklad vnútorná energia je stavová veličina, ale práca ňou nie je. Ak chceme porozumieť prečo, predstavme si plyn s tlakom p a objemom V, ktorý zväčšíme na 2V. Toto zväčšenie objemu môže prebehnúť pri danom konštantnom tlaku, vtedy plyn vykoná prácu (vykonaná práca je súčinom tlaku a zmeny objemu). Môžeme však postupovať aj inak: najprv plyn ochladíme pri nezmenenom objeme tak, aby tlak klesol na polovicu pôvodnej hodnoty. Pri tomto tlaku zväčšíme objem plynu z V na 2V a nakoniec zvýšime tlak na pôvodnú hodnotu. Celková vykonaná práca sa líši od prvej vypočítanej – práca teda skutočne nie je stavová veličina.

Entropia[upraviť | upraviť kód]

Zvláštny príklad stavovej veličiny predstavuje entropia. Z matematického hľadiska sú stavové veličiny také, ktoré majú totálny diferenciál. Ak aj neexistuje totálny diferenciál možno použiť tzv. integrálny faktor. Ak vynásobíme nestavovú veličinu napríklad parciálny diferenciál tepla q (to mimochodom nemá vlastne ani definíciu, iba intuitívnu) integrálnym faktorom 1/T dostaneme totálny diferenciál tzv. entropie. Z týchto dôvodov (stavovosti) bola entropia zavedená. Neskôr bola štatisticky interpretovaná a vďaka penetrácií do iných oblastí vedy dostala niekedy až mystický výklad (tepelná smrť a obdobné hyperbolické regresie), pričom sa zabudlo na triviálnu príčinu zavedenia pojmu.

Referencie[upraviť | upraviť kód]

  1. a b ANTAL, Štefan. Termodynamika. Bratislava : Edičné stredisko STU, 1992. 317 s.