Permutácia (algebra): Rozdiel medzi revíziami

z Wikipédie, slobodnej encyklopédie
Smazaný obsah Přidaný obsah
Petak (diskusia | príspevky)
otrasna formulacia, reforlmulovane, docasne
Petak (diskusia | príspevky)
Riadok 3: Riadok 3:
==Vlastnosti==
==Vlastnosti==
*Množina všetkých permutácií pevne zvolenej množiny je uzavretá vzhľadom na [[zložené zobrazenie|kompozície zobrazení]]. Čiže, ak <math>\pi_{1},\pi_{2}\colon A\to A</math> sú permutácie množiny <math>A</math>, potom aj [[zložené zobrazenie|kompozície]] <math>\pi_{1}\!\circ\pi_{2}</math> a <math>\pi_{2}\circ\pi_{1}</math> sú permutáciami množiny <math>A</math>. Z toho vyplýva, že množina všetkých permutácii pevne zvolenej množiny <math>A</math> spolu s operáciou skladania zobrazení tvorí [[grupa (matematika)|grupu]].
*Množina všetkých permutácií pevne zvolenej množiny je uzavretá vzhľadom na [[zložené zobrazenie|kompozície zobrazení]]. Čiže, ak <math>\pi_{1},\pi_{2}\colon A\to A</math> sú permutácie množiny <math>A</math>, potom aj [[zložené zobrazenie|kompozície]] <math>\pi_{1}\!\circ\pi_{2}</math> a <math>\pi_{2}\circ\pi_{1}</math> sú permutáciami množiny <math>A</math>. Z toho vyplýva, že množina všetkých permutácii pevne zvolenej množiny <math>A</math> spolu s operáciou skladania zobrazení tvorí [[grupa (matematika)|grupu]].
*Počet rôznych permutácií konečnej <math>n</math>-prvkovej množiny je <math>n!</math> (čiže <math>n</math> [[faktoriál]]).


==Cykly permutácie==
==Cykly permutácie==

Verzia z 19:19, 26. november 2006

Permutácia množiny je každá bijekcia z množiny do množiny .

Vlastnosti

  • Množina všetkých permutácií pevne zvolenej množiny je uzavretá vzhľadom na kompozície zobrazení. Čiže, ak sú permutácie množiny , potom aj kompozície a sú permutáciami množiny . Z toho vyplýva, že množina všetkých permutácii pevne zvolenej množiny spolu s operáciou skladania zobrazení tvorí grupu.
  • Počet rôznych permutácií konečnej -prvkovej množiny je (čiže faktoriál).

Cykly permutácie

Pre pevne zvolenú množinu a pre jej pevne zvolenú permutáciu sa definuje na množine relácia podmienkou, že vtedy a len vtedy ak existuje prirodzené číslo také, že

.

Relácia je ekvivalencia. Ak je množina konečná, triedy ekvivalencie relácie sa nazývajú cykly permutácie .

Pozri aj