Nebeská sféra
Nebeská sféra alebo nebeská guľa zriedkavo svetová sféra alebo svetová guľa je myslená guľa s ľubovoľným polomerom, na ktorú premietame polohy nebeských telies. Jej stred je zvyčajne v strede Zeme ale môže byť umiestnený v strede Slnka, alebo v akomkoľvek inom vhodnom mieste (napr. na stanovisku pozorovateľa) pretože posuny telies po zmene stredu je možné prepočítať[1].
Pozorovateľ na Zemi vidí pri ideálnom horizonte vždy iba polovicu nebeskej sféry. Druhá polovica je zaclonená Zemou. Poloha telesa na nebeskej sfére sa určuje pomocou niektorej súradnicovej sústavy. Poznáme horizontálnu sústavu súradníc, ekliptikálnu sústavu, ekvatoriálnu sústavu a galaktickú sústavu. Určená poloha telesa udáva len jeho smer, nie vzdialenosť.
Denný pohyb oblohy
[upraviť | upraviť zdroj]Rotačný pohyb Zeme zo západu na východ spôsobuje zdanlivý pohyb telies na nebeskej sfére z východu na západ. Nebeská sféra teda zdanlivo rotuje okolo osi, ktorá je totožná s rotačnou osou Zeme. Os pretína nebeskú sféru v dvoch bodoch, ktoré voláme severný a južný svetový (niekedy nebeský) pól a ktoré ležia presne nad severným a južným zemepisným pólom. Hviezdy a ostatné telesá na oblohe opisujú kružnice okolo týchto pólov. Hviezdy majú na sfére prakticky stále polohy, preto je možné ich pospájať do myslených obrazcov - súhvezdí. Nebeská sféra sa otočí okolo svojej osi raz za siderický (hviezdny) deň, ktorý trvá približne 23 hodín 56 minút. Znamená to, že medzi dvoma východmi tej istej hviezdy uplynie časový interval 23 hodín 56 minút.
Telesá slnečnej sústavy
[upraviť | upraviť zdroj]Pre telesá patriace do slnečnej sústavy je charakteristický ich vlastný pohyb na nebeskej sfére, preto medzi ich dvoma východmi uplynie trochu iný čas, ako je jeden hviezdny deň. V prípade Slnka sa tento časový interval nazýva slnečný deň a trvá 24 hodín. Slnko teda na nebeskej sfére zdanlivo zaostáva za hviezdnym pozadím, čo je spôsobené obehom Zeme okolo Slnka. Za rok sa Slnko ocitne v rovnakom bode na hviezdnom pozadí. Počas tej doby zdanlivo opíše kružnicu, ktorú nazývame ekliptika. Je to jedna z najvýznamnejších kružníc na nebeskej sfére.
Ročný pohyb oblohy
[upraviť | upraviť zdroj]V dôsledku obehu Zeme okolo Slnka sa Slnko zdanlivo pohybuje proti dennému pohybu oblohy, čo spôsobuje jeho zaostávanie na hviezdnom pozadí. Keďže Slnko je najjasnejšie teleso na oblohe a kvôli rozptylu jeho svetla nevidíme cez deň väčšinu objektov, stávajú sa tieto objekty pre nás nepozorovateľné po celú dobu, ako sú na oblohe spolu so Slnkom. Slnko sa však na oblohe neustále zdanlivo pohybuje. Vzďaľuje sa od hviezd, ktoré boli predtým v jeho blízkosti, až napokon je možné tieto hviezdy vidieť pred východom Slnka, kým je ešte obloha dostatočne tmavá. Tento okamih sa nazýva heliaktický východ objektu. Jeho opakom je heliaktický západ, čas, kedy telesá miznú pod horizontom ešte za skorého súmraku. Medzi heliaktickým východom a heliaktickým západom možno objekty v určitej časti noci pozorovať. Naopak, medzi heliaktickým západom a heliaktickým východom sú hviezdy a iné objekty na dennej oblohe spolu so Slnkom, čiže nepozorovateľné. Pozorovateľné časti nočnej oblohy napríklad v marci a v septembri sú značne odlišné. Po uplynutí jedného siderického roka, keď sa Slnko nachádza opäť v rovnakom bode nebeskej sféry, je však obloha rovnaká ako pred rokom. Výnimku tvoria Mesiac, planéty a ďalšie objekty slnečnej sústavy, ktoré sa okrem denného pohybu oblohy ešte nezávisle pohybujú po nebeskej sfére, spravidla v blízkosti ekliptiky.
Dôležité pojmy
[upraviť | upraviť zdroj]Rovnako významnou kružnicou na nebeskej sfére, akou je ekliptika, je svetový rovník. Je to priemet pozemského rovníka na oblohu. Rozdeľuje nebeskú sféru na severnú a južnú. Svetový rovník pretína ekliptiku v dvoch bodoch, ktoré nazývame jarný a jesenný bod. Ich názov pochádza z toho, že v týchto bodoch sa nachádza Slnko v okamihu jarnej a jesennej rovnodennosti. Na svetový rovník je kolmá priamka nazývaná svetová os, ktorá spája severný a južný svetový pól.
Rovníková sústava súradníc
[upraviť | upraviť zdroj]Svetový rovník a svetová os sú dôležité pre ekvatoriálnu alebo rovníkovú sústavu súradníc 2. druhu. Táto sústava je najpoužívanejšou súradnicovou sústavou v hviezdnych mapách, pretože je pohyblivá a otáča sa spolu s oblohou. Polohu telesa na nebeskej sfére udávajú dve súradnice: Rektascenzia a deklinácia. Rektascenzia je obdobou zemepisnej dĺžky, zatiaľ čo deklinácia je podobná zemepisnej šírke.
Rektascenia (RA) sa meria na svetovom rovníku smerom na východ v hodinovej miere od 0 do 24 hodín. Deklinácia (DEC) sa meria od svetového rovníka po svetový pól od 0° do 90° kladne na sever, záporne na juh.
Obzorníková sústava súradníc
[upraviť | upraviť zdroj]Zatiaľ čo rovníkové súradnice 2. druhu hviezdy sa nemenia v závislosti od toho, kde stojí pozorovateľ, u horizontálnych súradníc to tak nie je. Základnou rovinou horizontálnych súradníc je rovina horizontu - obzoru, ktorá je pre každého pozorovateľa iná. Na túto rovinu je kolmá priamka, ktorá nebeskú sféru pretína v dvoch bodoch - v zenite a nadire. Zenit je bod priamo nad hlavou pozorovateľa, nadir je bod priamo pod jeho nohami. Na horizonte sa nachádzajú štyri významné body: severný, južný, východný a západný bod horizontu, pričom na severnej pologuli severný bod horizontu leží kolmo pod severným svetovým pólom. Ak prenesieme poludník, ktorý prechádza pozorovateľom, na oblohu, dostaneme meridián - kružnicu, resp. polkružnicu, ktorá prechádza severným bodom horizontu, severným svetovým pólom, zenitom, južným bodom obzoru a po predĺžení pod horizont aj nadirom.
Kružnice kolmé na horizont sa označujú ako vertikály - výškové kružnice. Významný je prvý vertikál, ktorý spája východný a západný bod horizontu, pričom prechádza zenitom. Kružnice rovnobežné s horizontom a zmenšujúce sa smerom k zenitu sú almukantaráty.
V horizontálnej sústave súradníc polohu telesa udávajú dve súradnice: azimut a výška. Azimut sa meria od severného alebo od južného bodu horizontu v zápornom smere (v smere hodinových ručičiek) v stupňoch od 0 do 360. Výška sa meria v stupňoch od 0 do 90 od horizontu smerom k zenitu, prípadne od 0 do -90 smerom k nadiru. Nakoľko sa základné body a roviny tejto sústavy pohybujú spolu s pozorovateľom, je azimut a výška hviezdy v inom čase alebo na inom mieste iná. Preto sa tieto súradnice nepoužívajú vo hviezdnych mapách.
Vplyv zemepisnej šírky
[upraviť | upraviť zdroj]Na to, ktorú časť nebeskej sféry môžeme v noci pozorovať, nemá vplyv len ročné obdobie, ale aj zemepisná šírka. Od zemepisnej šírky závisí výška severného svetového pólu nad horizontom. Jeho výška sa vždy presne rovná zemepisnej šírke pozorovacieho miesta. Keď pozorovateľ postupuje smerom k pólu, zväčšuje sa výška svetového pólu nad horizontom. Čím je výška pólu väčšia, tým viac hviezd je pre daného pozorovateľa cirkumpolárnych - nikdy nezapadajúcich. Zároveň však rastie počet hviezd, ktoré pozorovateľ z daného miesta nikdy neuvidí, pretože sa nikdy nedostanú nad jeho horizont - sú pre neho nevychádzajúce.
Pozorovateľ stojaci na zemskom rovníku (prvý obrázok) má zemepisnú šírku nula. To znamená, že výška severného svetového pólu bude tiež nula stupňov. Severný a južný svetový pól ležia na horizonte. Keďže cirkumpolárne hviezdy sú tie, ktoré pri opísaní svojej kružnice okolo pólu nikdy nezapadnú pod horizont, na rovníku nemôže byť žiadna hviezda cirkumpolárna. Pozorovateľ na rovníku preto postupne v priebehu roka uvidí všetky súhvezdia severnej aj južnej oblohy. Všetky telesá vychádzajú a zapadajú kolmo. Z tohto dôvodu je na rovníku súmrak veľmi krátky, pretože hoci rýchlosť klesania Slnka je rovnaká ako vo vyšších zemepisných šírkach (rýchlosť rotácie Zeme sa nemení), Slnko klesá pod väčším uhlom ako vo vyšších zemepisných šírkach a skôr sa ponorí dostatočne hlboko pod horizont na to, aby obloha stmavla.
Druhý obrázok znázorňuje situáciu na 20. stupni severnej (alebo južnej) zemepisnej šírky. Svetový pól sa zdvihol od severného bodu horizontu o 20°. Časť hviezd, tých, ktorých uhlová vzdialenosť od pólu je menšia ako 20°, sa stalo cirkumpolárnymi. Rovnaká časť oblohy okolo opačného svetového pólu je nevychádzajúca. Zvyšné súhvezdia pozorovateľ postupne vidí v rôznych ročných obdobiach. Súmrak a svitanie trvajú dlhšie.
Na 50° zemepisnej šírky (tretí obrázok) je už cirkumpolárnych a nevychádzajúcich viac hviezd ako na 20. stupni. Počet vychádzajúcich súhvezdí sa smerom k pólu zmenšuje. Hviezdy a Slnko vychádzajú pod menším uhlom, súmrak a svitanie trvajú ešte dlhšie.
Posledný obrázok znázorňuje situáciu na zemskom póle. Zodpovedajúci svetový pól je priamo nad hlavou pozorovateľa. Pozorovateľ vidí počas polárnej noci vždy rovnaké súhvezdia, pretože nijaké pre neho súhvezdia nie sú vychádzajúce a zapadajúce. Všetky hviezdy opisujú kružnice okolo pólov rovnobežné s horizontom. Výnimkou je len Slnko, ktoré sa vďaka pohybu po ekliptike na 6 mesiacov dostáva nad horizont a 6 mesiacov je pod ním. Súmrak a úsvit tu majú najdlhšie trvanie.
Javy ovplyvňujúce polohu telesa na nebeskej sfére
[upraviť | upraviť zdroj]Poloha telesa na nebeskej sfére nie je totožná s reálnou polohou telesa v danom okamihu. Tieto odchýlky spôsobujú najmä rôzne pohyby Zeme a zemská atmosféra. Medzi javy spôsobené pohybom Zeme patrí aberácia a paralaxa. Jav spôsobený atmosférou sa nazýva refrakcia. Aberácia je zdanlivá odchýlka polohy telesa od jeho skutočnej polohy zapríčinená konečnou rýchlosťou svetla a pohybom pozorovateľa. Rozlišujeme dennú aberáciu, ktorá je spôsobená rotáciou Zeme, a ročnú aberáciu, ktorú zapríčiňuje obeh Zeme okolo Slnka. Paralaxa je uhol, ktorý zvierajú smery vedené z dvoch rôznych miest priestoru k pozorovanému telesu, resp. uhol o ktorý sa pozorované teleso posunie pri pozorovaní z dvoch rôznych miest. Refrakcia je odchýlka svetelného lúča od priameho smeru vznikajúca lomom svetla v atmosfére. Kvôli refrakcii je pozorovaná zenitová vzdialenosť zdroja vždy menšia, než jeho skutočná zenitová vzdialenosť. Vďaka refrakcii sme tiež schopní vidieť mierne pod horizont.
Referencie
[upraviť | upraviť zdroj]- ↑ U.S. Naval Observatory Nautical Almanac Office, Nautical Almanac Office; U.K. Hydrographic Office, H.M. Nautical Almanac Office (2008). The Astronomical Almanac for the Year 2010. U.S. Govt. Printing Office. ISBN 978-0-7077-4082-9. , p. M3-M4 (anglicky)