Jadrový reaktor
| Neutralita a nestrannosť tohto článku je ľahko spochybniteľná alebo sporná. Upravujte preto článok opatrne a predtým si, prosím, prečítajte diskusiu. |
Jadrový reaktor je zariadenie, ktoré slúži na spustenie a riadenie jadrovej reťazovej reakcie. Jadrové reaktory sú používané v atómových elektrárňach a ako pohon plavidiel. Niektoré reaktory sa používajú na produkciu izotopov pre lekárske a priemyselné použitie, alebo na produkciu plutónia , ktoré sa používa na vojenské účely. Niektoré reaktory slúžia iba na výskumné účely.
Úvod[upraviť | upraviť zdroj]
Prvý jadrový reaktor (uránovo-grafitový) bol uvedený do prevádzky v roku 1942 v Chicagu pod vedením Enrica Fermiho. Využitie jadrovej energie na pohon lodí a ponoriek je myšlienkou dr. Rossa Gunna.
Prvá energetická jadrová elektráreň na svete bola pripojená k sieti v roku 1954 v Obninsku pri Moskve. Jej tepelný výkon je 30 MW a elektrický 5 MW. Do roku 2004 bolo postavených viac ako 438 jadrových reaktorov na výrobu elektrickej energie v tridsiatich krajinách sveta, s celkovou kapacitou 370,000 MWe, čo predstavuje 16 % celkovej výroby elektrickej energie na Zemi. Počet inštalovaných reaktorov stále narastá. Okrem toho 56 krajín používa 284 výskumných reaktorov a ďalších 220 reaktorov je inštalovaných na lodiach a ponorkách.[1]
Jadrové elektrárne sú v podstate tepelné elektrárne, ktoré používajú namiesto parného kotla jadrový reaktor s parným generátorom. Rozdiel je iba v použitom druhu paliva a spôsobe jeho premeny na teplo.
Reaktor využíva väzbovú energiu jadra, ktorá sa uvoľňuje pri štiepení jadier ťažkých prvkov. Opakom je uvoľňovanie energie pri fúzii (spájaní) jadier ľahkých prvkov.
V energetických jadrových elektrárňach sa štiepi urán, ktorý sa v prírode nachádza ako minerál smolinec (uraninit).
Jadrové palivo je veľmi efektívne v porovnaní napr. s uhlím, biomasou alebo obnoviteľnými zdrojmi energie. Z 1 gramu 235U vznikne úplným štiepením až 75 600 MJ tepelnej energie.
Pre energetické účely sa využíva štiepna reakcia, ktorá je dobre technologicky zvládnutá. Vieme ju bezpečne riadiť a regulovať. Až sa podarí vedcom zvládnuť riadenie priebehu termonukleárnej reakcie - fúzie, získa človek nevyčerpateľný zdroj energie.
Časti jadrového reaktora[upraviť | upraviť zdroj]
1) palivo – palivové články
- prírodný urán obsahuje 0,72% 235U a 99,274% 238U
- obohacovaním sa zvyšuje podiel 235U, pre energetické reaktory obvykle na 2,5-3,5%, v niektorých prípadoch až na 5%
- 235U sa nazýva štiepnym (energetickým) materiálom - záchytom neutrónu dochádza k rozštiepeniu na dve časti
- 238U sa nazýva množivým materiálom - záchytom neutrónu nedochádza k rozštiepeniu, atómové číslo sa zvyšuje a následnými rádioaktívnymi premenami jadro prechádza na Pu, ktorý sa využíva na vojenské účely
- plutónium 239Pu je tiež možné v reaktore použiť ako palivo, zmes plutónia s uránom sú takzvané MOX palivá (mixed/metall oxid fuel)
2) moderátor
- moderátorom je látka, ktorá spomaľuje sekundárne neutróny, čím prispieva k udržaniu multiplikačného faktora neutrónov na konštantnej hodnote 1 – vznik stacionárnej reakcie, ovládnutie reťazovej reakcie; ako moderátor sa používa ľahká voda H2O alebo ťažká voda D2O či grafit
- moderátor sa zrážkami s neutrónmi zahrieva a pri väčších, ako zanedbateľných výkonoch reaktora sa musí chladiť
- moderátor nie je nevyhnutnou súčasťou jadrového reaktora, reaktory s rýchlymi neutrónmi moderátor nepotrebujú
3) riadiace (regulačné) tyče
- vsúvajú sa do prostredia jadrového štiepenia, ich úlohou je pohlcovať sekundárne neutróny a udržať multiplikačný faktor na hodnote 1; regulačné tyče sú zliatiny ocele a kadmia Cd alebo bóru B
4) bezpečnostné (havarijné) tyče
- majú rovnakú funkciu ako regulačné tyče, využívajú sa na zastavenie štiepnej reakcie predovšetkým v nebezpečných situáciach
5) reflektor neutrónov
- látka, ktorá obklopuje reakčné prostredie reaktora, býva zhotovená prevažne z grafitu; dokáže odrážať neutróny
6) betónové tienenie
- chráni okolie jadrového reaktora v prípade havárie, straty kontroly nad štiepnou reakciou a následným únikom ionizujúceho žiarenia
Princíp činnosti[upraviť | upraviť zdroj]
V jadrových reaktoroch sa ako štiepny materiál používa izotop uránu - 235U.
235U sa záchytom neutrónu mení na 236U, ktorý je nestabilný v dôsledku čoho sa jeho jadro štiepi najčastejšie na dve časti (fragmenty).
Po každom štiepení sa uvoľní presne 188MeV energie (vyplýva zo zákona zachovania energie). Pre zjednodušenie uvažujeme s 200MeV, ktoré sa rozdelia medzi štiepne fragmenty 160MeV a energiu rádioaktívnych premien 40MeV (beta častice 8MeV, gama fotóny 15MeV, neutróny 7MeV, neutrína 10MeV).
Palivo v podobe palivových kaziet je umiestnené v tlakovej nádobe reaktora, do ktorého prúdi chemicky upravená voda. Voda preteká kanálikmi v palivových kazetách a odvádza teplo, ktoré vzniká pri štiepnej reakcii. Voda z reaktora vystupuje s teplotou asi 297°C a prechádza horúcou vetvou primárneho potrubia do tepelného výmenníka - parogenerátora.
V parogenerátore preteká zväzkom rúrok a odvádza teplo vode, ktorá je privádzaná zo sekundárneho okruhu s teplotou 222°C.
Ochladená voda primárneho okruhu sa vracia späť do aktívnej zóny reaktora.
Voda sekundárneho okruhu sa v parogenerátore odparuje a cez parný kolektor sa para odvádza na lopatky turbín. Hriadeľ turbíny je mechanicky spojený s rotorom generátora, ktorý je budený budičom jednosmerného napätia. Vďaka tomu tam vzniká magnetické pole a na troch statorových cievkach generátora sa tam následne indukuje striedavé napätie 15,6 kV.
Transformátor, elektrický netočitý stroj, premieňa - transformuje vyrobené napätie 15,6 kV na napätie vysoké alebo veľmi vysoké (110 kV alebo 400 kV).
Para sa kondenzuje v kondenzátore, tepelnom výmenníku, a vracia sa späť do parogenerátora vo vodnom skupenstve.
Platí rovnica:
Počet neutrónov vzniknutých z prechádzajúceho štiepenia = Počet neutrónov, ktoré vyvolajú nové štiepenia + Počet neutrónov zachytených v konštr. materiáloch, moderátore, absorbátore.
Jadrový reaktor sa počas prevádzky nachádza v troch stavoch:
a) podkritický stav
- Multiplikačný koeficient < 1
- Počet predchadzajúcich štiepení > Počet nasledujúcich štiepení
- Dôsledok - znižovanie počtu štiepení, znižovanie počtu voľných neutrónov, znižovanie výkonu reaktora
b) kritický stav
- Multiplikačný koeficient = 1
- Počet predchádzajúcich štiepení = Počet nasledujúcich štiepení
- Dôsledok - stabilizovaný stav, stabilizovaný výkon reaktora
c) nadkritický stav
- Multiplikačný koeficient > 1
- Počet predchádzajúcich štiepení < Počet nasledujúcich štiepení
- Dôsledok - zvyšovanie počtu štiepení, zvyšovanie počtu voľných neutrónov, zvyšovanie výkonu reaktora
Na reguláciu rýchlosti štiepenia sa používa tzv. moderátor napr. ťažká voda, grafit, berýlium a absorbátor napr. H3BO3 (kyselina boritá).
Energia, ktorá zo štiepnej reakcie vzíde, výrazne zvyšuje kinetickú energiu molekúl vody či oxidu uhličitého v primárnom chladiacom okruhu. Tá sa pri výmene tepla vo výmenníku prenáša na vodu či oxid uhličitý v sekundárnom okruhu. V dôsledku toho sa táto voda mení na paru s obrovskou Ek a svojou vlastnou silou roztáča turbínu, ktorá poháňa elektrický generátor.
Bezpečnosť[upraviť | upraviť zdroj]
Bezpečnosť jadrových elektrárni proti úniku rádioaktívneho odpadu je zabezpečená tromi spôsobmi:
- Prvou bariérou úniku radiácie je obal palivových článkov
- Druhou bariérou je tlaková nádoba
- Treťou bariérou je samotná ochranná nádoba, v ktorej je reaktor uložený.
Pri úniku chladiaceho média z primárneho okruhu by vzniklo množstvo rádioaktívnej pary. Jej úniku do okolia bráni ochranná nádoba.[1]
Referencie[upraviť | upraviť zdroj]
- ↑ http://www.world-nuclear.org/info/inf01.html World Nuclear Association info
http://physedu.science.upjs.sk/sis/fyzika/environmentalna/neobzdroje/index.htm