Redaktor:Peterzet/pieskovisko

z Wikipédie, slobodnej encyklopédie
Prejsť na: navigácia, hľadanie


Walther Nernst, iniciátor Solvayových konferencií

Solvayove konferencie predstavujú sériu medzinárodných stretnutí najlepších vedcov z oblasti fyziky alebo chémie. Prvá zo Solvayovych konferencií z roku 1911 bola vôbec prvou medzinárodnou konferenciou v oblasti fyziky. Pomenovanie niesla podľa belgického veľkopodnikateľa v oblasti chemických produktov Ernesta Solvaya, ktorý jej organizovanie podporil finančne. Šesť mesiacov po konaní prvej konferencie bol v Brüsseli v roku 1912 opäť s podporou E. Solvaya založený Medzinárodný Solvayov Inštitút fyziky (angl.: The International Solvay Institutes for Physics)[1], o rok neskôr bol založený Solvayov inštitút chémie (angl.: The International Solvay Institute for Chemistry). Prvá chemická Solvayova konferencia sa následne uskutočnila v roku 1922. Obe inštitúcie zodpovedné za organizáciu konferencií sa spojili v roku 1970. Zpočiatku boli konferencie organizované pomerne nepravidelne, v súčastnosti prebieha organizácia v trojročnom cykle. Prvý rok z cyklu je organizovaná fyzikálna konferencia, druhý rok sa neuskutočňuje žiadna a tretí rok je organizovaná chemická konferencia. Konferencie sa uskutočňujú vždy v Brüsseli, pričom účasť je možná len na pozvánku [2].

História[upraviť | upraviť zdroj]

est Solvay, zakladateľ belgickej chemickej spoločnosti Solvay a zároveň mecenáš konferencií.

Prvá Solvayova konferencia bola usporiadaná z iniciatívy Walthera Nernsta, ktorý túto predstavu predostrel belgickému veľkopodnikateľovi Ernestovi Solvayovi, zakladateľovi rovnomennej chemickej spoločnosti. Kontakty medzi Nernstom a Solvazom pritom siahali minimálne do roku 1909, kedy Nernst spolu s Emilom Fischerom, významným berlínskym chemikom, navrhol Solvaya na Leibnizovu medailu Pruskej akadémie vied za jeho "štedrú podporu rozvoja vied"[3]. Nernstovým zámerom bolo usporiadať konferenciu, na ktorej by sa stretli najvýznamnejší experimentálny aj teoretický fyzici sveta a prediskutovali najaktuálnejšie fyzikálne otázky. Už v tejto dobe uvažoval Nernst o pravidelnom opakaovaní konferencií pomocou zastrešujúcej organizácie (založenej neskôr v roku 1912). Nernst na stretnutí so Solvayom navrhol v júli 1910 ako tému prvej konferencie „Uvedenie kvánt do teoretickej fyziky“. O tejto téme Nernst diskutoval už mesiac skôr s Maxom Planckom, ktorý ale vyjadril pochybnosti, nakoľka sa podľa neho o túto problematiku zaujúmali intenzívne iba Albert Einstein, Hendrik Antoon Lorentz, Wilhelm Wien a Joseph Larmor. Nernstov návrh bol ale nakoniec Solvayom akceptovaný a tak sa konferencia trvajúca od 30. októbra do 3. novembra 1911 venovala téme „Teória žiarenia a kvánt“. Ako miesto konferencie bol zvolený hotel Metropol v Brüsseli (belg.: Hötel Métropole)[4].

In einer kurzen Begrüßungsadresse sagte Walther Nernst: „...die fundamentalen und fruchtbaren Ideen von Planck und Einstein sollten uns als Grundlage unserer Diskussionen dienen, wir können sie modifizieren oder verbessern, aber wir können sie nicht ignorieren...

Die Tagung wurde nicht zuletzt durch die ausführliche, weit verbreitete Publikation aller Vorträge und Ergebnisse (realisiert durch Maurice de Broglie und Paul Langevin) zu einem außerordentlichen Erfolg und historischen Ereignis. Der Erfolg der Konferenz veranlasste Goldschmidt unter Mithilfe von Lorentz, Solvay die Fortsetzung seines Mäzenatentums vorzuschlagen und ein auf 30 Jahre angelegtes „Internationales Institut für Physik und Chemie“ zu gründen und periodisch erneute Solvay-Konferenzen nach dem Muster von 1911 zu organisieren.

Auf den folgenden Solvay-Konferenzen sollten stets nur eine beschränkte Zahl – nämlich maximal 25 – eingeladener höchstrangiger Physiker und Chemiker zu einer Art „Gipfelkonferenz“ zusammenkommen, um wichtige Themen zu diskutieren. Nach dem Ersten Weltkrieg wurden die Konferenzen in dreijährigen Abständen in den Jahren 1921 bis 1933, und nach dem Zweiten Weltkrieg ab 1948 in Brüssel fortgesetzt.

Solvayové fyzikálne konferencie[upraviť | upraviť zdroj]

Poradie Rok Originálny názov konferencie Slovenský preklad Predsedajúci


1 1911 La théorie du rayonnement et les quanta Teória žiarenia a kvánt H. A. Lorentz (Leiden)
2 1913 La structure de la matière Štruktúra hmoty H. A. Lorentz (Leiden)
3 1921 Atomes et électrons Atómy a elektróny H. A. Lorentz (Leiden)
4 1924 Conductibilité électrique des métaux et problèmes connexes Elektrická vodivosť kovov a súvisiace problémy H. A. Lorentz (Leiden)
5 1927 Electrons et photons Elektróny a fotóny H. A. Lorentz (Leiden)
6 1930 Le magnétisme Magnetizmus P. Langevin (Paríž)
7 1933 Structure et propriétés des noyaux atomiques Štruktúra a vlastnosti atómových jadier P. Langevin (Paríž)
8 1948 Les particules élémentaires Elementárne častice L. Bragg (Cambridge)
9 1951 L'état solide Pevné látky L. Bragg (Cambridge)
10 1954 Les électrons dans les métaux Elektróny v kovoch L. Bragg (Cambridge)
11 1958 La structure et l'évolution de l'univers Štruktúra a vývoj vesmíru L. Bragg (Cambridge)
12 1961 La théorie quantique des champs Kvantová teória poľa L. Bragg (Cambridge)
13 1964 The Structure and Evolution of Galaxies Štruktúra a evolúcia vesmíru R. Oppenheimer (Princeton)
14 1967 Fundamental Problems in Elementary Particle Physics Fundamentálne problémy fyziky elementárnych častíc Ch. Møller (Kodaň)
15 1970 Symmetry Properties of Nuclei Symetrické vlastnosti jadier E. Amaldi (Rím)
16 1973 Astrophysics and Gravitation Astrofyzika a Gravitácia E. Amaldi (Rím)
17 1978 Order and Fluctuations in Equilibrium and Nonequilibrium Statistical Mechanics Usporiadanie a fluktuácie in rovnovážnej a nerovnovážnej štatistickej fyzike L. Van Hove (CERN)
18 1982 Higher Energy Physics Fyzika vysokých energií L. Van Hove (CERN)
19 1987 Surface Science Fyzika povrchov F. W. de Wette (Austin)
20 1991 Quantum Optics Kvantová optika P. Mandel (Brüssel)
21 1998 Dynamical Systems and Irreversibility Dynamické systémy a ireverzibilita I. Antoniou (Brüssel)
22 2001 The Physics of Communication Fyzika komunikácie I. Antoniou (Brüssel)
23 2005 The Quantum Structure of Space and Time Kvantová štruktúra priestoru a času D. Gross (Santa Barbara)
24 2008 Quantum Theory of Condensed Matter Kvantová teória kondenzovaných látok B. Halperin (Harvard)
25 2011 The theory of the quantum world Teória kvantového sveta D. Gross (Santa Barbara)
26 2014 Astrophysics and Cosmology Astrofyzika a kozmológia R. Blandford (Stanford)

Zpracované podľa referencie [5].

Solvayove chemické konferencie[upraviť | upraviť zdroj]

Poradie Rok Originálny názov Slovenský preklad Predsedajúci
1 1922 Cinq Questions d'Actualité Päť aktuálnych otázok W. J. Pope (Cambridge)
2 1925 Structure et Activité Chimique Štruktúra a chemická aktivita W. J. Pope (Cambridge)
3 1928 Questions d'Actualité Aktuálne otázky W. J. Pope (Cambridge)
4 1931 Constitution et Configuration des Molécules Organiques Konštitúcia a konfigurácia organických molekúl W. J. Pope (Cambridge)
5 1934 L'Oxygène, ses réactions chimiques et biologiques Kyslík a jeho chemické a biologické reakcie. W. J. Pope (Cambridge)
6 1937 Les vitamines et les Hormones Vitamíny and hormóny F. Swarts (Ghent)
7 1947 Les Isotopes Izotopy P. Karrer (Zürich)
8 1950 Le Mécanisme de l'Oxydation Mechanizmus oxidácie P. Karrer (Zürich)
9 1953 Les Protéines Proteíny P. Karrer (Zürich)
10 1956 Quelques Problèmes de Chimie Minérale Niektoré problémy anorganickej chémie P. Karrer (Zürich)
11 1959 Les Nucléoprotéines Nukleoproteíny A. R. Ubbelohde (Londýn)
12 1962 Transfert d'Energie dans les Gaz Prenos energie v plyne A. R. Ubbelohde (Londýn)
13 1965 Reactivity of the Photoexcited Organic Molecule Reaktivita na fotoexcitovaných organických molekúl A. R. Ubbelohde (Londýn)
14 1969 Phase Transitions Fázové prechody A. R. Ubbelohde (Londýn)
15 1972 Electrostatic Interactions and Structure of Water Elektrostatické interakcie a štruktúra vody A. R. Ubbelohde (Londýn)
16 1976 Molecular Movements and Chemical Reactivity as conditioned by Membranes, Enzymes and other Molecules Molekulárne pohyby a chemická reaktivita podmienená membránami, enzýmami a ďalšími molekulami A. R. Ubbelohde (Londýn)
17 1980 Aspects of Chemical Evolution Aspekty chemickej evolúcie A. R. Ubbelohde (Londýn)
18 1983 Design and Synthesis of Organic Molecules Based on Molecular Recognition Dizajn a syntéza organických molekúl na základe molekulárneho rozpoznávania E. Katchalski (Rehovot) & V. Prelog (Zürich)
19 1987 Surface Science Veda povrchov F. W. de Wette (Austin)
20 1995 Chemical Reactions and their Control on the Femtosecond Time Scale Chemické reakcie a ich ovládanie na femtosekundovej časovej škále P. Gaspard (Brüssel)
21 2007 From Noncovalent Assemblies to Molecular Machines Od nekovalentných agregátov po molekulárne stroje J. P. Sauvage (Štrasburg)
22 2010 Quantum Effects in Chemistry and Biology Kvantové efekty v chémii a biológii G. Fleming (Berkeley)
23 2013 New Chemistry and New Opportunities from the Exapanding Protein Universe Nová chémia a nové príležitosti vďaka rozrastajúcemu sa vesmíru proteínov K. Wüthrich (ETH-Zurich)

Zpracované podľa referencie [6].


Referencie[upraviť | upraviť zdroj]

  1. D. Kormos Barkan, The Witches' Sabbath: The First International Solvay Congress in Physics, Science in Context 6 (1993), pp. 59-82.
  2. http://solvayinstitutes.be/html/solvayconference.html
  3. E. Fischer, "Festmahl zu Ehren der Herren E. Solvay und H. von Bottinger am 1. Juli 1909 im Kaiserlichen Automobilklub zu Berlin." Pamflet.
  4. D. Kormos Barkan, The Witches' Sabbath: The First International Solvay Congress in Physics, Science in Context 6 (1993), pp. 59-82.
  5. http://www.solvayinstitutes.be/html/solvayconf_physics.html
  6. http://www.solvayinstitutes.be/html/solvayconf_chemistry.html


Prvá Solvayová konferencia[upraviť | upraviť zdroj]

Die erste Solvay-Konferenz mit dem Thema „Theorie der Strahlung und Quanten“ wurde von Hendrik Antoon Lorentz geleitet und befasste sich mit den unterschiedlichen Ansätzen der Klassischen Physik und der im Entstehen begriffenen Quantenphysik.

In proceedings: Lorentz, Jeans, Warburg, Rubens, Planck, Knudsen, Perrin, Nernst, Kamerlingh Onnes, Sommerfeld, Langevin, and Einstein. discussions are included in proceedings.

first session was devoted to the report of Lorentz, he discussed various ways of studying the applicability of the law of equipartition to black body radiation

Planck reviews the various theoretical attempts in trying to understand the empirically successful Planck distribution of the black body radiation.

Einstein’s report: ”On the Present State of the Problem of Specific Heats”

Walther Nernst Robert Goldschmidt Max Planck Marcel Brillouin Heinrich Rubens Ernest Solvay Arnold Sommerfeld Hendrik Antoon Lorentz Frederick Lindemann Maurice de Broglie Martin Knudsen Emil Warburg Friedrich Hasenöhrl Jean-Baptiste Perrin Georges Hostelet Édouard Herzen James Jeans Wilhelm Wien Marie Curie Ernest Rutherford Henri Poincaré Heike Kamerlingh Onnes Albert Einstein Paul LangevinErste Solvay-Konferenz 1911
O tomto obrázku
Teilnehmer der Konferenz (siehe nebenstehende Nummerierung).

Das nebenstehende Foto zeigt die Teilnehmer der Konferenz (anklickbares Foto):

  1. Walther Nernst
  2. Robert Goldschmidt
  3. Max Planck
  4. Marcel Brillouin
  5. Heinrich Rubens
  6. Ernest Solvay
  7. Arnold Sommerfeld
  8. Hendrik Antoon Lorentz
  9. Frederick Lindemann
  10. Maurice de Broglie
  11. Martin Knudsen
  12. Emil Warburg
  13. Jean-Baptiste Perrin
  14. Friedrich Hasenöhrl
  15. Georges Hostelet
  16. Édouard Herzen
  17. James Jeans
  18. Wilhelm Wien
  19. Ernest Rutherford
  20. Marie Curie
  21. Henri Poincaré
  22. Heike Kamerlingh Onnes
  23. Albert Einstein
  24. Paul Langevin

Druhá Solvayová konferencia[upraviť | upraviť zdroj]

Druhá Solvayova konferencia v roku 1913

Teilnehmer der Konferenz waren:

Stehend von links nach rechts: Friedrich Hasenöhrl, Jules-Émile Verschaffelt, James Jeans, William Henry Bragg, Max von Laue, Heinrich Rubens, Marie Curie, Robert Goldschmidt, Arnold Sommerfeld, Édouard Herzen, Albert Einstein, Frederick Lindemann, Maurice de Broglie, William Jackson Pope, Eduard Grüneisen, Martin Knudsen, Georges Hostelet, Paul Langevin

Sitzend von links nach rechts: Walther Nernst, Ernest Rutherford, Wilhelm Wien, Joseph John Thomson, Emil Warburg, Hendrik Antoon Lorentz, Marcel Brillouin, William Barlow, Heike Kamerlingh Onnes, Robert Williams Wood, Louis Georges Gouy, Pierre-Ernest Weiss

Tretia Solvayová konferencia[upraviť | upraviť zdroj]

Tretia Solvayova konferencia v roku 1921

Zu dieser Konferenz im Jahr 1921 waren keine deutschen Wissenschaftler eingeladen, da die Erinnerung an den Ersten Weltkrieg und die deutsche Besetzung Belgiens noch zu kurz zurücklag. Dadurch waren einerseits die deutschen Wissenschaftler benachteiligt, andererseits litt aber auch die Qualität der Konferenz erheblich, da gerade an deutschen Universitäten wichtige Fortschritte auf dem Gebiet der modernen Physik (Quantentheorie, Relativitätstheorie) gemacht wurden.

Stehend von links nach rechts: William Lawrence Bragg, Edmond van Aubel, Wander Johannes de Haas, Édouard Herzen, Charles Glover Barkla, Paul Ehrenfest, Manne Siegbahn, Jules-Émile Verschaffelt, Léon Brillouin

Sitzend von links nach rechts: Albert A. Michelson, Martin Knudsen, Pierre-Ernest Weiss, Jean-Baptiste Perrin, Marcel Brillouin, Paul Langevin, Ernest Solvay, Owen Willans Richardson, Hendrik Antoon Lorentz, Joseph Larmor, Ernest Rutherford, Heike Kamerlingh Onnes, Robert Andrews Millikan, Pieter Zeeman, Marie Curie, Maurice de Broglie

Štvrtá Solvayová konferencia[upraviť | upraviť zdroj]

Štvrtá Solvayova konferencia v roku 1924

Teilnehmer der Konferenz von 1924 waren:

Erste Reihe von links nach rechts: Ernest Rutherford, Marie Curie, Edwin Hall, Hendrik Antoon Lorentz, William Henry Bragg, Marcel Brillouin, Willem Hendrik Keesom, Edmond van Aubel;

zweite Reihe von links nach rechts: Peter Debye, Abram Fjodorowitsch Ioffe, Owen Willans Richardson, Witold Broniewski, Walter Rosenhain, Paul Langevin, George de Hevesy;

darüber von links nach rechts: Léon Brillouin, Émile Henriot, Théophile de Donder, Edmond Henri Georges Bauer, Édouard Herzen, Auguste Piccard, Erwin Schrödinger, Percy Williams Bridgman, Jules-Émile Verschaffelt

Piata Solvayová konferencia[upraviť | upraviť zdroj]

Auf der wahrscheinlich berühmtesten, der fünften Solvay-Konferenz im Jahr 1927 über Elektronen und Photonen wurde die neu formulierte Quantentheorie diskutiert mit den dominierenden Persönlichkeiten Albert Einstein und Niels Bohr (Einstein-Bohr-Debatte). 17 der 29 Anwesenden besaßen oder bekamen in der Folgezeit den Nobelpreis.

Piata Solvayova konferencia v roku 1927
Die Teilnehmer der Konferenz (siehe nebenstehende Nummerierung)

Teilnehmer der Konferenz waren:

  1. Peter Debye
  2. Irving Langmuir
  3. Martin Knudsen
  4. Auguste Piccard
  5. Max Planck
  6. William Lawrence Bragg
  7. Émile Henriot
  8. Paul Ehrenfest
  9. Marie Curie
  10. Hendrik Anthony Kramers
  11. Édouard Herzen
  12. Hendrik Antoon Lorentz
  13. Théophile de Donder
  14. Paul Dirac
  15. Albert Einstein
  16. Erwin Schrödinger
  17. Arthur Holly Compton
  18. Jules-Émile Verschaffelt
  19. Paul Langevin
  20. Louis-Victor de Broglie
  21. Charles-Eugène Guye
  22. Wolfgang Pauli
  23. Werner Heisenberg
  24. Max Born
  25. Charles Thomson Rees Wilson
  26. Ralph Howard Fowler
  27. Léon Brillouin
  28. Niels Bohr
  29. Owen Willans Richardson

Šiesta Solvayová konferencia[upraviť | upraviť zdroj]

Sechste Solvay-Konferenz 1930

Teilnehmerfoto der Sechsten Solvay-Konferenz Brüssel 1930

Stehend von links nach rechts: Édouard Herzen, Émile Henriot, Jules-Émile Verschaffelt, Charles Manneback, Aimé Cotton, Jacques Errera, Otto Stern, Auguste Piccard, Walther Gerlach, Charles Galton Darwin, Paul Dirac, Edmond Henri Georges Bauer, Pjotr Leonidowitsch Kapiza, Léon Brillouin, Hendrik Anthony Kramers, Peter Debye, Wolfgang Pauli, Jakow Dorfman, John H. van Vleck, Enrico Fermi, Werner Heisenberg

Sitzend von links nach rechts: Théophile de Donder, Pieter Zeeman, Pierre-Ernest Weiss, Arnold Sommerfeld, Marie Curie, Paul Langevin, Albert Einstein, Owen Willans Richardson, Blas Cabrera, Niels Bohr, Wander Johannes de Haas

Siedma Solvayová konferencia[upraviť | upraviť zdroj]

Siebte Solvay-Konferenz 1933

Teilnehmerfoto der Siebten Solvay-Konferenz Brüssel (Oktober 1933)

Sitzend von links nach rechts: Erwin Schrödinger, Irène Joliot-Curie, Niels Bohr, Abram Fjodorowitsch Ioffe, Marie Curie, Paul Langevin, Owen Willans Richardson, Ernest Rutherford, Théophile de Donder, Maurice de Broglie, Louis-Victor de Broglie, Lise Meitner, James Chadwick.

Stehend von links nach rechts: Émile Henriot, Francis Perrin, Frédéric Joliot-Curie, Werner Heisenberg, Hendrik Anthony Kramers, Ernst Stahel, Enrico Fermi, Ernest Walton, Paul Dirac, Peter Debye, Nevill Francis Mott, Blas Cabrera, George Gamow, Walther Bothe, Patrick Maynard Stuart Blackett, M. S. Rosenblum, Jacques Errera, Edmond Henri Georges Bauer, Wolfgang Pauli, Jules-Émile Verschaffelt, Max Cosyns, Édouard Herzen, John Cockcroft, Charles Drummond Ellis, Rudolf Peierls, Auguste Piccard, Ernest Lawrence, Léon Rosenfeld.

Abwesend Albert Einstein und Charles-Eugène Guye

Ôsma Solvayová konferencia[upraviť | upraviť zdroj]

Teilnehmer der Konferenz 1948 waren:[1][2]

Sitzend von links nach rechts: John Cockcroft, Marie-Antoinette Tonnelat, Erwin Schrödinger, Owen Willans Richardson, Niels Bohr, Wolfgang Pauli, William Lawrence Bragg, Lise Meitner, Paul Dirac, Hendrik Anthony Kramers, Théophile de Donder, Walter Heitler, Jules-Émile Verschaffelt;

in zweiter Reihe: Paul Scherrer, Ernst Stahel, Oskar Klein, Patrick Maynard Stuart Blackett, Philip Dee, Felix Bloch, Otto Robert Frisch, Rudolf Peierls, Homi Jehangir Bhabha, Robert Oppenheimer, Giuseppe Occhialini, Cecil Frank Powell, Hendrik Casimir, Marc de Hemptinne;

in dritter Reihe: Paul Kipfer, Pierre Auger, Francis Perrin, Robert Serber, Léon Rosenfeld, B. Ferretti, Christian Møller, Louis Leprince-Ringuet;

in vierter Reihe: G. Balasse, L. Flamache, L. Groven, O. Goche, M. Demeur, J. Errera, Van Isacker, Leon Van Hove, Edward Teller, Y. Goldschmidt, Ladislaus Laszlo Marton, C. C. Dilworth, Ilya Prigogine, Jules Géhéniau, E. Henriot, M. Van Styvendael.

Deviata Solvayová konferencia[upraviť | upraviť zdroj]

Neunte Solvay-Konferenz 1951

Teilnehmer der Konferenz 1951 waren;

Sitzend: Crussaro, Norman Percy Allen, Yvette Cauchois, Borelius, William Lawrence Bragg, Christian Møller, Sietz, Hollomon, Frank,

zweite Reihe: Gerhart Wolfgang Rathenau, Koster, Rudberg, L. Flamache, O. Goche, L. Groven, Egon Orowan, Wilhelm Gerard Burgers, William B. Shockley, André Guinier, C. S. Smith, Ulrich Dehlinger, Laval, E. Henriot,

dritte Reihe: Gaspart, Lomer, Alan Cottrell, Georges Homes, Hubert Curien.

Desiata Solvayová konferencia[upraviť | upraviť zdroj]

10. Solvay-Konferenz 1954

Teilnehmer der Konferenz 1954 waren:[3]

Sitzend von links nach rechts: Kurt Mendelssohn, Herbert Fröhlich, David Pines, Christian Møller, Wolfgang Pauli, William Lawrence Bragg, Nevill Francis Mott, Louis Néel, Karl Wilhelm Meissner, MacDonald, Clifford Shull, Charles Friedel

Stehend von links nach rechts: Cor Gorter, Charles Kittel, Bernd Matthias, Ilya Prigogine, Lars Onsager, Brian Pippard, Smit, Fausto Gherardo Fumi, Jones, John Hasbrouck Van Vleck, Per-Olov Löwdin, Raymond John Seeger, Paul Kipfer, O. Goche, G. Balasse, Jules Géhéniau.

Jedenásta Solvayová konferencia[upraviť | upraviť zdroj]

Teilnehmer der Konferenz 1958 waren:

Sitzend von links nach rechts: William McCrea, Jan Hendrik Oort, Georges Lemaître, Cor Gorter, Wolfgang Pauli, William Lawrence Bragg, Robert Oppenheimer, Moller, Harlow Shapley, Otto Heckmann;

Darüber von links nach rechts: Oskar Klein, William Wilson Morgan, Fred Hoyle, Kukaskin, Viktor Hambardsumjan, Hendrik Christoffel van de Hulst, Markus Fierz, Allan Rex Sandage, Walter Baade, Evry Schatzman, John Archibald Wheeler, Hermann Bondi, Thomas Gold, Herman Zanstra, Léon Rosenfeld, Ledoux, Bernard Lovell, Jules Géhéniau.

Šablóna:Lückenhaft

23. Solvay-Konferenz[upraviť | upraviť zdroj]

Die Teilnehmer der Konferenz 2005 waren: Nima Arkani-Hamed, Abhay Vasant Ashtekar, Michael Francis Atiyah, Constantin Bachas, Tom Banks, Lars Brink, Robert Brout, Claudio Bunster, Curtis Callan, Thibault Damour, Jan de Boer, Bernard de Wit, Robbert Dijkgraaf, Michael R. Douglas, Georgi Dvali, François Englert, Ludwig Faddejew, Pierre Fayet, Willy Fischler, Peter Galison, Murray Gell-Mann, Gary Gibbons, Michael Green, Brian Greene, David Gross, Alan Guth, Jeffrey Harvey, Gary Horowitz, Bernard Julia, Shamit Kachru, Renata Kallosch, Elias Kiritsis, Igor Klebanov, Andrei Linde, Dieter Lüst, Juan Maldacena, Nikita Nekrasov, Hermann Nicolai, Hirosi Ooguri, Joseph Polchinski, Alexander Poljakow, Eliezer Rabinovici, Pierre Ramond, Lisa Randall, Waleri Rubakow, John Schwarz, Nathan Seiberg, Ashoke Sen, Stephen Shenker, Eva Silverstein, Paul Steinhardt, Andrew Strominger, Gerardus ’t Hooft, Neil Turok, Gabriele Veneziano, Steven Weinberg, Frank Wilczek, Paul Windey und Shing-Tung Yau.

24. Solvay-Konferenz[upraviť | upraviť zdroj]

Die Teilnehmer der Konferenz 2008 waren: Ian Affleck, Igor Aleiner, Boris Altshuler, Philip W. Anderson, Natan Andrei, Tito Arecchi, Assa Auerbach, Leon Balents, Carlo Beenakker, Immanuel Bloch, John Chalker, Juan Ignacio Cirac Sasturain, Marvin Cohen, Leticia F. Cugliandolo, Sankar Das Sarma, J. C. Davis, Eugene Demler, James Eisenstein, M. P. A. Fisher, Michael Freedman, Antoine Georges, Steven M. Girvin, Leonid Glazman, David Gross, F. Duncan M. Haldane, Bertrand Halperin, Cathy Kallin, Bernhard Keimer, Wolfgang Ketterle, Alexei Kitaev, Steven A. Kivelson, Klaus von Klitzing, Leo Kouwenhoven, Robert B. Laughlin, Patrick A. Lee, Daniel Loss, Allan H. MacDonald, Alexander Mirlin, Naoto Nagaosa, N. P. Ong, Giorgio Parisi, Pierre Ramond, Nicholas Read, T. M. Rice, Subir Sachdev, T. Senthil, Zhi-Xun Shen, Efrat Shimshoni, Ady Stern, Matthias Troyer, Chandra Varma, Xiao-Gong Wen, Steven R. White, Frank Wilczek und Peter Zoller.

Literatur[upraviť | upraviť zdroj]

  • P. Marage, G. Wallenborn: Les conseils Solvay et la physique moderne. In: Robert Halleux, Jan Vanndermissen, A. Despy-Mayer, G. Vanpaemel (Hrsg.): Histoire des Sciences en Belgique, 1815–2000. Band 2, 2001, S. 109–121. (online; PDF; 219 kB)
  • Pierre Marage, Grégoire Wallenborn (Hrsg.): The Solvay Councils and the Birth of Modern Physics (= Science Networks. Historical Studies, Book 22). 1. Auflage. Birkhäuser, Basel 1999, ISBN 3-7643-5705-3.
  • Walther Nernst: Anwendung der Quantentheorie auf eine Reihe physikalisch-chemischer Probleme. Solvay Kongress. Band 3, 1911, S. 208–244. Abhandlung der Deutschen Bunsen-Gesellschaft fur angewandte physikalische Chemie.
  • Die Theorie der Strahlung und der Quanten. Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). Verlag von Wilhelm Knapp, Halle a. S. 1914.

Weblinks[upraviť | upraviť zdroj]

Commons-logo.svg
Wikimedia Commons ponúka multimediálny obsah k téme
Peterzet/pieskovisko


Kondenz[upraviť | upraviť zdroj]

Fyzika kondenzovaných látok sa zaoberá rôznymi kondenzovanými fázami.[4] Medzi najbežnejšie kondenzované fázy pri tom patria pevné látky a kvapaliny. Menej bežné fázy zahŕňajú napríklad ferromagnetické a antiferromagnetické fázy spinov v atomárnych mriežkach, supravodivé fázy vyskytujúce sa väčšinou pri nízkych teplotách, či napríklad aj Boseho–Einsteinove kondenzáty vyskytujúce sa v ultrachladných bozonických systémoch.

Pri teoretickom štúdiu kondenzovaných látok sa v súčasnosti využívajú hlavne zákony kvantovej a štatistickej fyziky, pričom mnohé teoretické koncepty a techniky sú úzko späté s fyzikou elementárnych častíc ako aj nukleárnou fyzikou.[5] V minulosti bolo mnoho výsledkov dosiahnutých aj v rámci klasickej mechaniky (napríklad Drudeho model), tieto ale majú obmedzenú aproximatívnu platnosť. Experimentálne štúdium v rámci fyziky kondenzovaných látok sa zameriava na meranie rôznych makroskopických veličín. Fyzika kondenzovaných látok má mnohé presahy do chémie, materialového inžinierstva, či do nanotechnológii. Veľmi úzky vzťah existuje aj smerom k atómovej fyzike a biofyzike.

Život (joliot currie)[upraviť | upraviť zdroj]

Frédéric Joliot vyštudoval vyššiu odbornú školu chémie a fyziky v Paríži. Školu ukončil v roku 1923 a nastúpil do železiarní v Luxenburgu. Po necelých dvoch rokoch bol prepustený. S pomocou profesora Langevina získal v roku 1925 miesto v laboratóriu Marie Curie. Necelý rok po nástupe do laboratória sa oženil s Irène Curie, dcérou Marie Curie. V roku 1930 získal doktorát prírodných vied za prácu o elektrochémie polónia. Od roku 1932 publikoval množstvo prác spoločne so svojou ženou.

A variety of topics in physics such as crystallography, metallurgy, elasticity, magnetism, etc., were treated as distinct areas, until the 1940s when they were grouped together as Solid state physics. Around the 1960s, the study of physical properties of liquids was added to this list, and it came to be known as condensed matter physics.[6] According to physicist Phil Anderson, the term was coined by him and Volker Heine when they changed the name of their group at the Cavendish Laboratories, Cambridge from "Solid state theory" to "Theory of Condensed Matter",[7] as they felt it did not exclude their interests in the study of liquids, nuclear matter and so on.[8] The Bell Labs (then known as the Bell Telephone Laboratories) was one of the first institutes to conduct a research program in condensed matter physics.[6]

References to "condensed" state can be traced to earlier sources. For example, in the introduction to his 1947 "Kinetic theory of liquids" book,[9] Yakov Frenkel proposed that "The kinetic theory of liquids must accordingly be developed as a generalization and extension of the kinetic theory of solid bodies. As a matter of fact, it would be more correct to unify them under the title of "condensed bodies".

Historický vývoj[upraviť | upraviť zdroj]

Obdobie Objav
3 miliony rokov p.n.l. až 4. tisícročie p.n.l. Doba kamenná
300 až 1200 p.n.l. Doba bronzová
1200 až 700 p.n.l. Doba železná
500 až 370. p.n.l. Leukippos z Miléta, Démokritos z Abdér rozvíjajú atomistickú teóriu
500 až 300 p.n.l. Empedokles považuje hmotu za zloženú zo štyroch elementov (oheň, voda, vzduch, zem). Platón a Aristoteles rozvíjajú teóriu elementov, Aristoteles pridáva piaty element éter a odmieta atomistickú povahu elementov, zastáva ich kontinuálny charakter.
stredovek Prevládajú Aristotelové predstavy.
1700 Atomistická myšlienka, Newton
19. storočie Physics is considered to be “solved” by Classical Mechanics, Electromagnetism, and Thermodynamics. Metallurgy becomes

important and is described by empirical laws.

okolo 1800 Humphry Davy pozoroval, že zo 40 vtedy známych prvkov má 26 kovové vlastnosti (lesk, rozťažnosť, vysoká elektrická a tepelná vodivosť).[10] This indicated that the atoms in Dalton's atomic theory were not indivisible as Dalton claimed, but had inner structure. Davy further claimed that elements that were then believed to be gases, such as nitrogen and hydrogen could be liquefied under the right conditions and would then behave as metals.[11][notes 1]
1820 Klasifikácia kryštálových symetrii (Brilliouin) ???????
1823 Michael Faraday, then an assistant in Davy's lab, successfully liquefied chlorine and went on to liquefy all known gaseous elements, with the exception of nitrogen, hydrogen and oxygen.[10]
a Magnetism as a property of matter has been known since pre-historic times.[13] However, the first modern studies of magnetism only started with the development of electrodynamics by Faraday, Maxwell and others in the nineteenth century, which included the classification of materials as ferromagnetic, paramagnetic and diamagnetic based on their response to magnetization.[14]
1853 Wiedemannov Franzov zákon (tepelná a elektrická vodivosť)
1869 1869, Irish chemist Thomas Andrews studied the phase transition from a liquid to a gas and coined the s phases,[15] and Dutch physicist Johannes van der Waals supplied the theoretical framework which allowed the prediction of critical behavior based on measurements at much higher temperatures.[16]
1879 Edwin Herbert Hall pozoroval vznik tranzverzného elektrického napätia pri pôsobení magnetického poľa na prúd, efekt nazývaný dnes Hallov jav.[17] Správne teoretické vysvetlenie javu bolo podané až po objave elektrónu.
1897 Thomson objavuje elektrón.
1900 1900 Drude (a Lorentz) teória kovov na báze voľného plynu elektrónov. Paul Drude proposed the first theoretical model for a classical electron moving through a metallic solid.[5] Drude's model described properties of metals in terms of a gas of free electrons, and was the first microscopic model to explain empirical observations such as the Wiedemannov–Franzov zákon.[18][19] However, despite the success of Drude's free electron model, it had one notable problem, in that it was unable to correctly explain the electronic contribution to the specific heat of metals, as well as the temperature dependence of resistivity at low temperatures.[20]
1906 1906, Pierre Weiss introduced the concept of magnetic domains to explain the main properties of ferromagnets.[21]
1908 1908, James Dewar and H. Kamerlingh Onnes were successfully able to liquefy hydrogen and then newly discovered helium, respectively.[10]
1911 Onnes (a Holst) objav supravodivovosti v medi NB: Onnes 1913 when he observed the electrical resistivity of mercury to vanish at temperatures below a certain value.[22] The phenomenon completely surprised the best theoretical physicists of the time, and it remained unexplained for several decades.[23] Albert Einstein, in 1922, said regarding contemporary theories of superconductivity that “with our far-reaching ignorance of the quantum mechanics of composite systems we are very far from being able to compose a theory out of these vague ideas”.[24]
1912 1912 Max von Laue objavuje kryštálovú difrakciu röntgenového žiarenia The structure of crystalline solids was studied by Max von Laue and Paul Knipping, when they observed the X-ray diffraction pattern of crystals, and concluded that crystals get their structure from periodic lattices of atoms.[25]
1913 W.H. & W.L. Bragg analyzujú kryštály pomocou röntgenového žiarenia,
1905 Teória fotoemisie Einstein
1907-1913 1907-1913 Teória špecifického tepla pevných látok (Einstein, Debye, Born)
1920 1920’s Ramanov rozptyl
a 19020-te difrakcia elektrónov na kryštáloch (Davisson, Thomson)
1925-1928 1925-1928 kvantová mechanika (Schrödinger, Heisenberg, Pauli, Dirac)
1926-1928 1926-1928 Sommerfeld, Pauli: The electron gas with Dirac statistics. Felix Bloch, Arnold Sommerfeld, and independently by Wolfgang Pauli, who used quantum mechanics to describe the motion of a quantum electron in a periodic lattice. In particular, Sommerfeld's theory accounted for the Fermi–Dirac statistics satisfied by electrons and was better able to explain the heat capacity and resistivity.[20]
1928-1933 The Quantum Theory of an electron in a solid: Band Structure (Bloch, Peierls, Brillouin, Van Vleck) Band structure calculations was first used in 1930 to predict the properties of new materials, Magnetism (Pauli, Landau, Heisenberg, Bethe)

Alvén, Néel 1970 1947 S., B., B. 1956

1935 The mathematics of crystal structures developed by Auguste Bravais, Yevgraf Fyodorov and others was used to classify crystals by their symmetry group, and tables of crystal structures were the basis for the series International Tables of Crystallography, first published in 1935.[26]
1947 John Bardeen, Walter Brattain and William Shockley developed the first semiconductor-based transistor, heralding a revolution in electronics.[5]
1950 1950’s Kvantová teória poľa (Feynman, Dyson, Schwinger, Tomanaga...)
1950 1950 Ginzburg-Landau: fenomenologická teória supravodivosti Ginzburg, Leggett, Abrikosov, 2003
1950 Late 1950’s Teória interagujúcich elektrónov v pevných látkach (Landau, Migdal)
1950 Late 1950’s Rozptyl a difrakcia neutrónov (Brockhouse, Shull)
1957 1957 John Bardeen, Cooper, Schriefer: teória konvenčnej supravodivosti
1958 1958 Josephsonov efekt tunelujúcich elektrónov v supravodičoch
1960 1960’s Pochopenia minima vodivosti: Kondov efekt (Kondo, Anderson 1969)
The study of phase transition and the critical behavior of observables, known as critical phenomena, was a major field of interest in the 1960s.[27] Leo Kadanoff, Benjamin Widom and Michael Fisher developed the ideas of critical exponents and scaling.
1960 1960-te Density Functional Theory (Kohn, Pople)
1960 1960-te teória tekutých kryštálov NB: de Gennes 1991
1972 1970’s Renormalizačná grupa NB: Wilson 1982 Renormalizačná grupa Leo Kadanoff, Benjamin Widom and Michael Fisher developed the ideas of critical exponents and scaling. These ideas were unified by Kenneth Wilson in 1972, under the formalism of the renormalization group in the context of quantum field theory.[27]
1972 1972 Superfluid He3 (Lee, Osheroff, Richardson) NB: L.,O.,R. 1996
1980 The Integer Quantum Hall Effect von Klitzing 1985 The quantum Hall effect was discovered by Klaus von Klitzing in 1980 when he observed the Hall conductivity to be integer multiples of a fundamental constant.[28] (see figure) The effect was observed to be independent of parameters such as the system size and impurities, and in 1981, theorist Robert Laughlin proposed a theory describing the integer states in terms of a topological invariant called the Chern number.[29]
1982 Shortly after, in 1982, Horst Störmer and Daniel Tsui observed the fraktálny kvantový Hallov efekt where the conductivity was now a rational multiple of a constant. Laughlin, in 1983, realized that this was a consequence of quasiparticle interaction in the Hall states and formulated a variational solution, known as the Laughlin wavefunction.[30] The study of topological properties of the fractional Hall effect remains an active field of research.
1985 1985 Fulerény C60 (Curl, Kroto, Smalley)
1986 1987 objav vysokoteplotnej supravodivosti Karl Müller and Johannes Bednorz discovered the first high temperature superconductor, a material which was superconducting at temperatures as high as 50 Kelvin. It was realized that the high temperature superconductors are examples of strongly correlated materials where the electron–electron interactions play an important role.[31] A satisfactory theoretical description of high-temperature superconductors is still not known and the field of strongly correlated materials continues to be an active research topic.
1988 1988 obrovská magnetorezistencia
1991 1991 uhlíkové nanotrubky (Iijima)
1995 1995 realizácia Boseho-Einsteinovho kondenzátu NB: (Ketterle, Cornell, Wieman) K., C., .W. 2001
2003 2003 realizácia monoatomárnych grafénových vrstiev

Review article on the history of Cond. Mat. Physics: L.Hoddeson, G.Baym, M.Eckert, Rev. Mod. Phys. 59, p.287 (1987).

Nobelové ceny[upraviť | upraviť zdroj]

NB: Max von Laue 1914

NB: H&L. Bragg 1915

NB:Einstein 1921

NB: Raman 1930

(Davisson, Thomson) NB: D., T. 1937

NB: Landau 1962

Bardeen, Cooper, Schriefer: teória konvenčnej supravodivosti NB: B.,C.,S. 1972

NB: Esaki, Giaever, Josephson 1973

NB: Anderson, Mott, Van Vleck 1977

NB: Wilson 1982

NB: Müller, Bednorz 1987

NB: de Gennes 1991

(Brockhouse, Shull) NB: B.,S., 1994

NB: 1996 (Chémia)

(Lee, Osheroff, Richardson) NB: L.,O.,R. 1996

NB: (Tsui, Störmer, Laughlin) NB: T, S., L. 1998

(Kohn, Pople) NB: 1998 (Chemistry)

NB: Fert, Grünberg 2007

NB: Geim,Novoselov 2010

Heike Kamerlingh Onnes and Johannes van der Waals with the helium "liquefactor" in Leiden (1908)
A replica of the first point-contact transistor in Bell labs

After the advent of quantum mechanics, Lev Landau in 1930 predicted the quantization of the Hall conductance for electrons confined to two dimensions.[32]

Pierre Curie studied the dependence of magnetization on temperature and discovered the Curie point phase transition in ferromagnetic materials.[13]

The first attempt at a microscopic description of magnetism was by Wilhelm Lenz and Ernst Ising through the Ising model that described magnetic materials as consisting of a periodic lattice of spins that collectively acquired magnetization.[13] The Ising model was solved exactly to show that spontaneous magnetization cannot occur in one dimension but is possible in higher-dimensional lattices. Further research such as by Bloch on spin waves and Néel on antiferromagnetism led to the development of new magnetic materials with applications to magnetic storage devices.[13]

Moderná mnohočasticová fyzika[upraviť | upraviť zdroj]

The Sommerfeld model and spin models for ferromagnetism illustrated the successful application of quantum mechanics to condensed matter problems in the 1930s. However, there still were several unsolved problems, most notably the description of superconductivity and the Kondo effect.[33] After World War II, several ideas from quantum field theory were applied to condensed matter problems. These included recognition of collective modes of excitation of solids and the important notion of a quasiparticle. Russian physicist Lev Landau used the idea for the Fermi liquid theory wherein low energy properties of interacting fermion systems were given in terms of what are now known as Landau-quasiparticles.[33] Landau also developed a mean field theory for continuous phase transitions, which described ordered phases as spontaneous breakdown of symmetry. The theory also introduced the notion of an order parameter to distinguish between ordered phases.[34] Eventually in 1965, John Bardeen, Leon Cooper and John Schrieffer developed the so-called BCS theory of superconductivity, based on the discovery that arbitrarily small attraction between two electrons can give rise to a bound state called a Cooper pair.[35]

The quantum Hall effect: Components of the Hall resistivity as a function of the external magnetic field

In 2009, David Field and researchers at Aarhus University discovered spontaneous electric fields when creating prosaic films of various gases. This has more recently expanded to form the research area of spontelectrics.[36]

Theoretical[upraviť | upraviť zdroj]

Theoretical condensed matter physics involves the use of theoretical models to understand properties of states of matter. These include models to study the electronic properties of solids, such as the Drude model, the Band structure and the density functional theory. Theoretical models have also been developed to study the physics of phase transitions, such as the Ginzburg–Landau theory, critical exponents and the use of mathematical techniques of quantum field theory and the renormalization group. Modern theoretical studies involve the use of numerical computation of electronic structure and mathematical tools to understand phenomena such as high-temperature superconductivity, topological phases and gauge symmetries.

Emergence[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Emergence

Theoretical understanding of condensed matter physics is closely related to the notion of emergence, wherein complex assemblies of particles behave in ways dramatically different from their individual constituents.[35] For example, a range of phenomena related to high temperature superconductivity are not well understood, although the microscopic physics of individual electrons and lattices is well known.[37] Similarly, models of condensed matter systems have been studied where collective excitations behave like photons and electrons, thereby describing electromagnetism as an emergent phenomenon.[38] Emergent properties can also occur at the interface between materials: one example is the lanthanum-aluminate-strontium-titanate interface, where two non-magnetic insulators are joined to create conductivity, superconductivity, and ferromagnetism.

Electronic theory of solids[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Electronic band structure

The metallic state has historically been an important building block for studying properties of solids.[39] The first theoretical description of metals was given by Paul Drude in 1900 with the Drude model, which explained electrical and thermal properties by describing a metal as an ideal gas of then-newly discovered electrons. This classical model was then improved by Arnold Sommerfeld who incorporated the Fermi–Dirac statistics of electrons and was able to explain the anomalous behavior of the specific heat of metals in the Wiedemann–Franz law.[39] In 1913, X-ray diffraction experiments revealed that metals possess periodic lattice structure. Swiss physicist Felix Bloch provided a wave function solution to the Schrödinger equation with a periodic potential, called the Bloch wave.[40]

Calculating electronic properties of metals by solving the many-body wavefunction is often computationally hard, and hence, approximation techniques are necessary to obtain meaningful predictions.[41] The Thomas–Fermi theory, developed in the 1920s, was used to estimate electronic energy levels by treating the local electron density as a variational parameter. Later in the 1930s, Douglas Hartree, Vladimir Fock and John Slater developed the so-called Hartree–Fock wavefunction as an improvement over the Thomas–Fermi model. The Hartree–Fock method accounted for exchange statistics of single particle electron wavefunctions, but not for their Coulomb interaction. Finally in 1964–65, Walter Kohn, Pierre Hohenberg and Lu Jeu Sham proposed the density functional theory which gave realistic descriptions for bulk and surface properties of metals. The density functional theory (DFT) has been widely used since the 1970s for band structure calculations of variety of solids.[41]

Symmetry breaking[upraviť | upraviť zdroj]

Ice melting into water. Liquid water has continuous translational symmetry, which is broken in crystalline ice.
Bližšie informácie v hlavnom článku: Symmetry breaking

Certain states of matter exhibit symmetry breaking, where the relevant laws of physics possess some symmetry that is broken. A common example is crystalline solids, which break continuous translational symmetry. Other examples include magnetized ferromagnets, which break rotational symmetry, and more exotic states such as the ground state of a BCS superconductor, that breaks U(1) rotational symmetry.[42]

Goldstone's theorem in quantum field theory states that in a system with broken continuous symmetry, there may exist excitations with arbitrarily low energy, called the Goldstone bosons. For example, in crystalline solids, these correspond to phonons, which are quantized versions of lattice vibrations.[43]

Phase transition[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Phase transition

The study of critical phenomena and phase transitions is an important part of modern condensed matter physics.[44] Phase transition refers to the change of phase of a system, which is brought about by change in an external parameter such as temperature. In particular, quantum phase transitions refer to transitions where the temperature is set to zero, and the phases of the system refer to distinct ground states of the Hamiltonian. Systems undergoing phase transition display critical behavior, wherein several of their properties such as correlation length, specific heat and susceptibility diverge. Continuous phase transitions are described by the Ginzburg–Landau theory, which works in the so-called mean field approximation. However, several important phase transitions, such as the Mott insulatorsuperfluid transition, are known that do not follow the Ginzburg–Landau paradigm.[45] The study of phase transitions in strongly correlated systems is an active area of research.[46]

Experimental[upraviť | upraviť zdroj]

Experimental condensed matter physics involves the use of experimental probes to try to discover new properties of materials. Experimental probes include effects of electric and magnetic fields, measurement of response functions, transport properties and thermometry.[47] Commonly used experimental techniques include spectroscopy, with probes such as X-rays, infrared light and inelastic neutron scattering; study of thermal response, such as specific heat and measurement of transport via thermal and heat conduction.

Image of X-ray diffraction pattern from a protein crystal.

Scattering[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Scattering

Several condensed matter experiments involve scattering of an experimental probe, such as X-ray, optical photons, neutrons, etc., on constituents of a material. The choice of scattering probe depends on the observation energy scale of interest.[48] Visible light has energy on the scale of 1 eV and is used as a scattering probe to measure variations in material properties such as dielectric constant and refractive index. X-rays have energies of the order of 10 keV and hence are able to probe atomic length scales, and are used to measure variations in electron charge density. Neutrons can also probe atomic length scales and are used to study scattering off nuclei and electron spins and magnetization (as neutrons themselves have spin but no charge).[48] Coulomb and Mott scattering measurements can be made by using electron beams as scattering probes,[49] and similarly, positron annihilation can be used as an indirect measurement of local electron density.[50] Laser spectroscopy is used as a tool for studying phenomena with energy in the range of visible light, for example, to study non-linear optics and forbidden transitions in media.[51]

External magnetic fields[upraviť | upraviť zdroj]

In experimental condensed matter physics, external magnetic fields act as thermodynamic variables that control the state, phase transitions and properties of material systems.[52] Nuclear magnetic resonance (NMR) is a technique by which external magnetic fields can be used to find resonance modes of individual electrons, thus giving information about the atomic, molecular and bond structure of their neighborhood. NMR experiments can be made in magnetic fields with strengths up to 65 Tesla.[53] Quantum oscillations is another experimental technique where high magnetic fields are used to study material properties such as the geometry of the Fermi surface.[54] The quantum hall effect is another example of measurements with high magnetic fields where topological properties such as Chern–Simons angle can be measured experimentally.[51]

The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density.

Cold atomic gases[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Optical lattice

Cold atom trapping in optical lattices is an experimental tool commonly used in condensed matter as well as atomic, molecular, and optical physics.[55] The technique involves using optical lasers to create an interference pattern, which acts as a "lattice", in which ions or atoms can be placed at very low temperatures.[56] Cold atoms in optical lattices are used as "quantum simulators", that is, they act as controllable systems that can model behavior of more complicated systems, such as frustrated magnets.[57] In particular, they are used to engineer one-, two- and three-dimensional lattices for a Hubbard model with pre-specified parameters.[58] and to study phase transitions for Néel and spin liquid ordering.[55]

In 1995, a gas of rubidium atoms cooled down to a temperature of 170 nK was used to experimentally realize the Bose–Einstein condensate, a novel state of matter originally predicted by S. N. Bose and Albert Einstein, wherein a large number of atoms occupy a single quantum state.[59]

Aplikácie[upraviť | upraviť zdroj]

Computer simulation of "nanogears" made of fullerene molecules. It is hoped that advances in nanoscience will lead to machines working on the molecular scale.

Research in condensed matter physics has given rise to several device applications, such as the development of the polovodičový tranzistor,[5] and laser technology.[51] Several phenomena studied in the context of nanotechnológia come under the purview of condensed matter physics.[60] Techniques such as skenovací tunelový mikroskop can be used to control processes at the nanometer scale, and have given rise to the study of nanofabrication.[61] Several condensed matter systems are being studied with potential applications to quantum computation,[62] including experimental systems like kvantové bodky, SQUIDs, and theoretical models like the toric code and the quantum dimer model.[63] Condensed matter systems can be tuned to provide the conditions of coherence and phase-sensitivity that are essential ingredients for quantum information storage.[61] Spintronika is a new area of technology that can be used for information processing and transmission, and is based on spin, rather than electron transport.[61] Condensed matter physics also has important applications to biophysics, for example, the experimental technique of magnetic resonance imaging, which is widely used in medical diagnosis.[61]

See also[upraviť | upraviť zdroj]

Šablóna:Colbegin

Šablóna:Colend

Notes[upraviť | upraviť zdroj]

  1. Segré Archiv
  2. Bilder der Solvay Konferenzen
  3. Segré Archiv
  4. TAYLOR, Philip L. (2002). A Quantum Approach to Condensed Matter Physics. Cambridge University Press. ISBN 0-521-77103-X.
  5. a b c d Cohen, Marvin L. (2008). "Essay: Fifty Years of Condensed Matter Physics". Physical Review Letters 101 (25). DOI:10.1103/PhysRevLett.101.250001. z 31 March 2012.
  6. a b Kohn, W. (1999). "An essay on condensed matter physics in the twentieth century". Reviews of Modern Physics 71 (2): S59. DOI:10.1103/RevModPhys.71.S59. z 27 March 2012.
  7. Philip Anderson. Department of Physics. Princeton University. prístup: 27 March 2012.
  8. (November 2011)"More and Different". World Scientific Newsletter 33.
  9. FRENKEL, J. (1947). Kinetic Theory of Liquids. Oxford University Press.
  10. a b c Goodstein, David (2000). "Richard Feynman and the History of Superconductivity". Physics in Perspective 2 (1): 30. DOI:10.1007/s000160050035. z 7 April 2012.
  11. DAVY, John (ed.) (1839). The collected works of Sir Humphry Davy: Vol. II. Smith Elder & Co., Cornhill.
  12. Silvera, Isaac F. (2010). "Metallic Hydrogen: The Most Powerful Rocket Fuel Yet to Exist". Journal of Physics 215: 012194. DOI:10.1088/1742-6596/215/1/012194.
  13. a b c d MATTIS, Daniel (2006). The Theory of Magnetism Made Simple. World Scientific. ISBN 9812386718.
  14. Chatterjee, Sabyasachi (August 2004). "Heisenberg and Ferromagnetism". Resonance 9 (8): 57. DOI:10.1007/BF02837578. z 13 June 2012.
  15. Rowlinson, J. S. (1969). "Thomas Andrews and the Critical Point". Nature 224 (8): 541. DOI:10.1038/224541a0.
  16. ATKINS, Peter (2009). Elements of Physical Chemistry. Oxford University Press. ISBN 978-1-4292-1813-9.
  17. Hall, Edwin (1879). "On a New Action of the Magnet on Electric Currents". American Journal of Mathematics 2 (3): 287–92. DOI:10.2307/2369245. z 2008-02-28.
  18. KITTEL, Charles (1996). Introduction to Solid State Physics. John Wiley & Sons. ISBN 0-471-11181-3.
  19. HODDESON, Lillian (1992). Out of the Crystal Maze: Chapters from The History of Solid State Physics. Oxford University Press. ISBN 9780195053296.
  20. a b CSURGAY, A.. The free electron model of metals. Pázmány Péter Catholic University.
  21. VISINTIN, Augusto (1994). Differential Models of Hysteresis. Springer. ISBN 3540547932.
  22. van Delft, Dirk (September 2010). "The discovery of superconductivity". Physics Today 63 (9): 38. DOI:10.1063/1.3490499. z 7 April 2012.
  23. Slichter, Charles. Introduction to the History of Superconductivity. Moments of Discovery. American Institute of Physics. prístup: 13 June 2012.
  24. Schmalian, Joerg (2010). "Failed theories of superconductivity". Modern Physics Letters B 24 (27): 2679. DOI:10.1142/S0217984910025280.
  25. Eckert, Michael (2011). "Disputed discovery: the beginnings of X-ray diffraction in crystals in 1912 and its repercussions". Acta Crystallographica A 68 (1): 30. DOI:10.1107/S0108767311039985.
  26. Aroyo, Mois, I., Müller, Ulrich and Wondratschek, Hans (2006). "Historical introduction". International Tables for Crystallography A: 2–5. DOI:10.1107/97809553602060000537.
  27. a b Fisher, Michael E. (1998). "Renormalization group theory: Its basis and formulation in statistical physics". Reviews of Modern Physics 70 (2): 653. DOI:10.1103/RevModPhys.70.653. z 14 June 2012.
  28. Panati, Gianluca, "The Poetry of Butterflies", April 15, 2012. z 14 June 2012.[nefunkčný odkaz]
  29. Avron, Joseph E., Osadchy, Daniel and Seiler, Ruedi (2003). "A Topological Look at the Quantum Hall Effect". Physics Today 56 (8): 38. DOI:10.1063/1.1611351.
  30. Wen, Xiao-Gang (1992). "Theory of the edge states in fractional quantum Hall effects". International Journal of Modern Physics C 6 (10): 1711. DOI:10.1142/S0217979292000840. z 14 June 2012.
  31. Quintanilla, Jorge (June 2009). "The strong-correlations puzzle". Physics World. z 14 June 2012.
  32. (1977) Quantum Mechanics: Nonrelativistic Theory. Pergamon Press. ISBN 0750635398.
  33. a b Coleman, Piers (2003). "Many-Body Physics: Unfinished Revolution". Annales Henri Poincaré 4 (2): 559. DOI:10.1007/s00023-003-0943-9.
  34. KADANOFF, Leo, P. (2009). Phases of Matter and Phase Transitions; From Mean Field Theory to Critical Phenomena. The University of Chicago.
  35. a b COLEMAN, Piers (2011). Introduction to Many Body Physics. Rutgers University.
  36. Field, David (12 Mar 2013). "Spontaneous electric fields in solid films: spontelectrics". Int.Rev.Phys.Chem. 32 (3): 345. DOI:10.1080/0144235X.2013.767109.
  37. Understanding Emergence. National Science Foundation. prístup: 30 March 2012.
  38. Levin, Michael (2005). "Colloquium: Photons and electrons as emergent phenomena". Reviews of Modern Physics 77 (3): 871. DOI:10.1103/RevModPhys.77.871.
  39. a b ASHCROFT, Neil W. (1976). Solid state physics. Harcourt College Publishers. ISBN 978-0-03-049346-1.
  40. HAN, Jung Hoon (2010). Solid State Physics. Sung Kyun Kwan University.
  41. a b Perdew, John P. (2010). "Fourteen Easy Lessons in Density Functional Theory". International Journal of Quantum Chemistry 110 (15): 2801–2807. DOI:10.1002/qua.22829. z 13 May 2012.
  42. NAYAK, Chetan. Solid State Physics. UCLA.
  43. Leutwyler, H. (1996). "Phonons as Goldstone bosons". ArXiv: 9466.
  44. (1986) “Chapter 3: Phase Transitions and Critical Phenomena”, Physics Through the 1990s. National Research Council. ISBN 0-309-03577-5.
  45. Balents, Leon (2005). "Competing Orders and Non-Landau–Ginzburg–Wilson Criticality in (Bose) Mott Transitions". Progress of Theoretical Physics Supplement (160): 314. DOI:10.1143/PTPS.160.314.
  46. Sachdev, Subir (2010). "Quantum phase transitions beyond the Landau–Ginzburg paradigm and supersymmetry". Annals of Physics 325 (1): 2. DOI:10.1016/j.aop.2009.08.003.
  47. RICHARDSON, Robert C. (1988). Experimental Techniques in Condensed Matter Physics at Low Temperatures. Addison-Wesley. ISBN 0-201-15002-6.
  48. a b CHAIKIN, P. M. (1995). Principles of condensed matter physics. Cambridge University Press. ISBN 0-521-43224-3.
  49. RISEBOROUGH, Peter S. (2002). Condensed Matter Physics I.
  50. Siegel, R. W. (1980). "Positron Annihilation Spectroscopy". Annual Review of Materials Science 10: 393–425. DOI:10.1146/annurev.ms.10.080180.002141.
  51. a b c COMMISSION ON PHYSICAL SCIENCES, MATHEMATICS, AND APPLICATIONS (1986). Condensed Matter Physics. National Academies Press. ISBN 978-0-309-03577-4.
  52. Committee on Facilities for Condensed Matter Physics (2004). Report of the IUPAP working group on Facilities for Condensed Matter Physics : High Magnetic Fields. International Union of Pure and Applied Physics.
  53. Moulton, W. G. and Reyes, A. P. (2006). “Nuclear Magnetic Resonance in Solids at very high magnetic fields”, Herlach, Fritz High Magnetic Fields. World Scientific. ISBN 9789812774880.
  54. Doiron-Leyraud, Nicolas (2007). "Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor". Nature 447 (7144): 565–568. DOI:10.1038/nature05872. PMID 17538614.
  55. a b Schmeid, R. (2008). "Quantum phases of trapped ions in an optical lattice". New Journal of Physics 10 (4): 045017. DOI:10.1088/1367-2630/10/4/045017.
  56. Greiner, Markus (2008). "Condensed-matter physics: Optical lattices". Nature 453 (7196): 736–738. DOI:10.1038/453736a. PMID 18528388.
  57. Buluta, Iulia (2009). "Quantum Simulators". Science 326 (5949): 108–11. DOI:10.1126/science.1177838. PMID 19797653.
  58. Jaksch, D. (2005). "The cold atom Hubbard toolbox". Annals of Physics 315 (1): 52–79. DOI:10.1016/j.aop.2004.09.010.
  59. Glanz, James, "3 Researchers Based in U.S. Win Nobel Prize in Physics", October 10, 2001. z 23 May 2012.
  60. Lifshitz, R. (2009). "Nanotechnology and Quasicrystals: From Self-Assembly to Photonic Applications". NATO Science for Peace and Security Series B: 119. DOI:10.1007/978-90-481-2523-4_10.
  61. a b c d Yeh, Nai-Chang (2008). "A Perspective of Frontiers in Modern Condensed Matter Physics". AAPPS Bulletin 18 (2). z 31 March 2012.
  62. Privman, Vladimir. Quantum Computing in Condensed Matter Systems. Clarkson University. prístup: 31 March 2012.
  63. Aguado, M, Cirac, J. I. and Vidal, G. (2007). "Topology in quantum states. PEPS formalism and beyond". Journal of Physics: Conference Series 87: 012003. DOI:10.1088/1742-6596/87/1/012003.

References[upraviť | upraviť zdroj]

  1. Both hydrogen and nitrogen have since been liquified, however ordinary liquid nitrogen and hydrogen do not possess metallic properties. Physicists Eugene Wigner and Hillard Bell Huntington predicted in 1935[12] that a state metallic hydrogen exists at sufficiently high pressures (over 25 GPa), however this has not yet been observed.

Further reading[upraviť | upraviť zdroj]

{{Physics-footer}} {{Good article}}