Mars

z Wikipédie, slobodnej encyklopédie
(Presmerované z Mars (planéta))
Prejsť na: navigácia, hľadanie
Symbol rozcestia O iných významoch výrazu Mars pozri Mars (rozlišovacia stránka).
Mars Mars symbol.svg
Mars.jpg
Elementy dráhy
(Epocha J2000)
Veľká polos 227 936 637 km
1,523 662 31 AU
Obvod dráhy 1,429 Tm
9,553 AU
Excentricita (e) 0,093 412 33
Periapsida (q) 206 644 545 km
1,381 333 46 AU
Apoapsida (Q) 249 228 730 km
1,665 991 16 AU
Doba obehu (P) 686,9601 d
(1,8808 a)
Synodická doba obehu 779,96 d
Priemerná obežná rýchlosť 24,077 km/s
Maximálna obežná rýchlosť 26,499 km/s
Minimálna rýchlosť 21,972 km/s
Sklon dráhy (i) 1,850 61°
Argument perihélia (ω) 286,462 30°
Počet satelitov 2
Fyzikálne charakteristiky
Rovníkový priemer 6 804,9 km
(0,533 Zeme)
Povrch 1,448×108 km2
(0,284 Zeme)
Objem 1,638×1011 km3
(0,151 Zeme)
Hmotnosť 6,4185×1023 kg
(0,107 Zeme)
Hustota (ρ) 3,934 g/cm3
Gravitácia na rovníku 3,69 m/s2
(0,376 G)
Úniková rýchlosť 5,027 km/s
Rýchlosť rotácie 868,22 km/h (na rovníku)
Sklon osi rotácie 25,19°
Rektascenzia
severného pólu
317,681 43° (21 h 10 min 44 s)
Deklinácia 52,886 50°
Albedo 0,15
Povrchová teplota min. 133 K (-143°C)
max. 308 K (35°C)
priemer 210 K (-63°C)
Atmosféra
Zloženie atmosféry oxid uhličitý (95,32 %)
dusík (2,7 %)
argón (1,6 %)
kyslík (2,13 %)
oxid uhoľnatý (0,07 %)
vodná para (0,03 %)
Oxid dusnatý (0,01 %)
Neón (0,000 25 %)
Kryptón (0,000 03 %)
Xenón (0,000 008 %)
Ozón (0,000 003 %)
Metán (0,000 001 05 %)[1]
Atmosférický tlak 600 až 1000 Pa

Mars je štvrtá planéta slnečnej sústavy v poradí od Slnka. Je to druhá najmenšia planéta (po Merkúre). Pomenovaná je po Marsovi, starorímskom bohovi vojny. Jeho dráha sa nachádza až za dráhou Zeme. Ide o planétu terestrického typu, to znamená, že má pevný horninový povrch pokrytý impaktnými krátermi, vysokými sopkami, hlbokými kaňonmi a ďalšími útvarmi. Obiehajú ho dva mesiace nepravidelného tvaru pomenované Fobos a Deimos.

V období, keď je Mars v opozícii (nachádza sa na opačnej strane oblohy ako Slnko), je viditeľný na oblohe po celú noc. Prvé písomné záznamy o planéte a jej pozorovaní pochádzajú z obdobia prvých civilizácií. Všetky veľké staroveké civilizácie, Egypťania, Babylončania a Gréci, vedeli o tejto „putujúcej hviezde“ a dávali jej svoje pomenovania. Považovali ju za symbol ohňa a krvi, pretože horniny, pôda a obloha na planéte majú červený, alebo ružový odtieň. Nazývali ju „Červený objekt“, „Nebeský oheň“, „Hviezda smrti“ alebo „Boh vojny“.[2]

Takmer 20 úspešných kozmických sond od 60. rokov 20. storočia umožnilo detailné skúmanie planéty. V súčasnosti (2014) sú na obežnej dráhe Marsu tri funkčné sondy (Mars Odyssey, Mars Express a Mars Reconnaissance Orbiter) a na povrchu planéty sa pohybujú dve vozidlá misie: Opportunity a Curiosity,[3] ktoré poskytujú údaje, umožňujúce mapovať väčšiu časť povrchu, definovať základné historické obdobia, či porozumieť základným javom odohrávajúcim sa na planéte. K planéte mieri aj „Mars Orbiter Mission“ z Indickej vesmírnej výskumnej organizácie (ISRO), vypustenej 5. novembra 2013. Pokiaľ bude úspešná, stane sa štvrtou agentúrou po Sovietskom vesmírnom programe, NASA a ESA, ktorá dosiahne Mars.[4]

Fyzikálna charakteristika[upraviť | upraviť zdroj]

Veľkosť povrchu Marsu je oproti Zemi štvrtinová a jeho hmotnosť desatinná (1,448×108 km2 a 6,4185×1023 kg). Okolo Slnka obehne raz za 687 dní. Jeho vzdialenosť od Slnka sa mení od 207 miliónov do 249 miliónov kilometrov (stredná vzdialenosť je 228 miliónov km). Jednu otočku okolo svojej osi (Sol) vykoná raz za 24 hodín 39 minút 35,244 sekúnd. Dĺžka dňa na Marse sa podobá dĺžke pozemského dňa najviac spomedzi všetkých planét slnečnej sústavy.

Presné zloženie planéty zatiaľ nepoznáme, ale na základe astronomických pozorovaní a prieskumu niekoľkých desiatok meteoritov z Marsu,[5] ktoré sa na Zemi našli, sa predpokladá, že povrch Marsu je tvorený prevažne z bazaltov. Chemické analýzy vykonané vozidlami Pathfinder, Spirit a Opportunity ukázali, že sú niektoré oblasti obohatené o alkalickú a silikátovú zložku podobajúcu sa pozemským andezitom.[6] Pri pozorovaní je planéta načervenalá, čo je spôsobené tým, že celý povrch planéty je pokrytý oxidom železitým.

Obežná dráha a rotácia[upraviť | upraviť zdroj]

Mars obieha okolo Slnka po výstrednejšej elipse ako Zem, vo vzdialenosti medzi 206 644 545 km v perihéliu a 249 228 730 km v aféliu. Doba jedného obehu okolo centrálnej hviezdy je 686,9601 pozemského dňa. Sklon jeho rotačnej osi ku kolmici na ekliptiku 25,19° je porovnateľný so sklonom 23,44°, ktorý má Zem. Vďaka tomuto sklonu sa tu vyskytujú ročné obdobia, podobné tým na Zemi, aj keď sú takmer dvakrát tak dlhé, lebo „marťanský rok“ je 1,88-násobok pozemského roku. Vzdialenosť od Zeme kolíše v priebehu obehu po dráhe v rozmedzí od 55 miliónov do 400 miliónov kilometrov.

Vznik[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Vznik a vývoj slnečnej sústavy

Mars vznikol podobne ako ostatné terestriálne planéty v slnečnej sústave približne pred 4,5 miliardami rokov[7] akréciou z plyno-prachového disku, ktorý obiehal okolo rodiacej sa centrálnej hviezdy - praslnka. Zrážkami plynov a prachových častíc sa začali formovať malé telesá, ktoré svojou gravitáciou priťahovali ďalšie častice a okolitý plyn. Vznikli tak prvé planetezimály, ktoré sa vzájomne zrážali a formovali väčšie telesá. Na konci tohto procesu vznikli v sústave prvé terestrické protoplanéty. Planéty blízko k Slnku sú tvorené ťažšími prvkami, vzdialenejšie sú tvorené ľahšími prvkami podobne ako Mars. V porovnaní s ostatnými má Mars – najvzdialenejšia z terestrických planét – najväčšie zastúpenie ľahkých prvkov ako kremík, hliník, či síra.

Po sformovaní protoplanéty dochádzalo k masívnemu bombardovaniu povrchu zvyšným materiálom po vzniku planét, čo malo za následok jeho neustále pretváranie a pretavovanie. Je dokonca možné, že celý povrch sa roztavil do podoby tzv. magmatického oceánu, ktorého tepelná energia spoločne s teplom uvoľneným diferenciáciou plášťa a jadra sa dodnes kumuluje vo vnútri planéty a umožňuje existenciu vulkanizmu a tektonických procesov.[8]

Magnetické pole a radiácia[upraviť | upraviť zdroj]

Mars má slabé magnetické pole, jeho ochranná funkcia je však neporovnateľne menšia ako funkcia zemského magnetického poľa. Merania sondy Mars Global Surveyor priniesli dôkazy, že krátko po vzniku planéty mal Mars dynamickejší povrch, ktorý sa viac podobal na povrch Zeme.[9] Meranie magnetometrom ukázalo magnetické pruhy, čo svedčí o silnejšom magnetickom dyname, ktoré pracovalo niekoľko miliónov rokov po vzniku. Neznáma udalosť (možno dopad asteroidu) však toto pole narušila.[9]

Zo zistení vedcov z amerického Úradu pre letectvo a vesmír (NASA), ktorí analyzovali získané dáta zo sondy Mars Odyssey, vyplýva, že radiácia na obežnej dráhe Marsu je 2,5-krát väčšia ako na Medzinárodnej vesmírnej stanici a dosahuje tak limit pre bezpečný pobyt. NASA považuje tento problém za zvládnuteľný s pomocou tienidiel a systému varovania pred vyšším žiarením zo Slnka.[10]

V okolí Marsu sa nevyskytuje silné magnetické pole, ale niektoré oblasti planéty vykazujú, že v minulosti boli zmagnetizované. Toto podporuje hypotézu, že historické magnetické pole malo globálny charakter. Už zmieňované pozorované magnetické anomálie mohli súvisieť s tvorbou novej oceánskej kôry. Podobný proces sa odohráva na Zemi v oblastiach stredooceánskych chrbtov.

Atmosféra a klimatické podmienky[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Atmosféra Marsu
Nad povrchom je viditeľná atmosféra. Záber pochádza zo sondy Mars Global Surveyor

Mars má dnes veľmi riedku atmosféru, ktorá nie je schopná zadržiavať tepelnú výmenu medzi povrchom a okolitým priestorom. To má za následok veľké tepelné rozdiely počas dňa a noci. Tlak na povrchu sa pohybuje medzi 600 až 1000 Pa, čo je približne 100 až 150-krát menej ako na Zemi alebo ako približne 30 km nad povrchom Zeme. Podobne ako na Zemi aj na Marse dochádza k malým zmenám v atmosfére v závislosti na sezónnych výkyvoch. V zime 25 – 30 % atmosférického oxidu uhličitého zmrzne na póloch, zatiaľ čo v lete opäť sublimuje a vráti sa do atmosféry.[11]

Atmosféra je tvorená prevažne z oxidu uhličitého (95,32 %), no obsahuje aj dusík (2,7 %), argón (1,6 %), kyslík (0,13 %), oxid uhoľnatý (0,07 %) a vodnej pary (0,03 %)[1] vznikajúce sublimáciou ľadu z polárnych čiapočiek. V atmosfére sa tiež v menšom množstve vyskytuje neón, kryptón, xenón, ozón a metán.

Priemerná teplota pri povrchu planéty je okolo −56 °C. Na rovníku sa teploty bežne pohybujú od −90 do −10 °C, a nad nulu sa dostanú iba výnimočne. Oproti tomu teplota povrchovej vrstvy pôdy môže niekedy dosiahnuť až +30 °C. Aj napriek týmto občasným priaznivým teplotám nemôže kvapalná voda na povrchu existovať, pretože by sa začala vplyvom nízkeho tlaku okamžite vyparovať. Podľa najnovších poznatkov sa predpokladá, že voda by mohla existovať aj v kvapalnom skupenstve, avšak nasýtená soľami, čo zabezpečí jej nižší bod mrazu (vďaka kryoskopickému efektu) a teda tekutosť. Zároveň vďaka ebulioskopickému efektu sa zníži jej možnosť odparovania. Vo výške okolo 40 až 50 km sa nachádza vrstva riedkych plynov, ktorá má stálu teplotu. Následne vo výške približne 130 km začína ionosféra a vodíková koróna planéty siaha až do výšky 20 000 km.[12]

Podrobné informácie o zložení atmosféry, jej zmenách a o dlhodobejších klimatických podmienkach boli získané na základe údajov z niekoľkých sond, ktoré na povrchu pristáli (napr. Viking 1 a 2, Spirit, Opportunity atď.), resp. skúmali atmosféru z obežnej dráhy okolo Marsu. Na základe meraní sa zistilo, že aj na Marse je prítomný tzv. skleníkový efekt, ktorý otepľuje planétu približne o 5 °C[13] a zadržuje okolo 30 % tepelnej energie.[14] Výškovo sa atmosféra delí na nižšiu (do 45 km), strednú (do 110 km) a vyššiu (nad 110 km).

Oblačnosť[upraviť | upraviť zdroj]

Napriek tomu, že je planéta studená a suchá, má veľmi dynamické počasie. Na Marse bola pozorovaná aj oblačnosť[15], ktorá je pravdepodobne tvorená kryštálikmi oxidu uhličitého.[16] Prejavujú sa tu aj ďalšie procesy, ktoré spolu tvoria marťanské počasie. V atmosfére planéty sa často vyskytujú prachové búrky, ktoré majú niekedy celoplanetárny charakter.[17] Vyskytujú sa tu aj malé vzdušné víry v podobe prašných vírov (tzv. diablov).[18]

Počas búrok môžu vetry na povrchu planéty dosahovať rýchlosť až okolo 200 km/h. Tieto vetry vynášajú do atmosféry prachové častice s obsahom magnetitu, ktoré v konečnom dôsledku spôsobujú žltkastú až červenú farbu marťanskej oblohy. Priemerná rýchlosť vetra je však len 35 až 50 km/h.[12] Kvôli redšej atmosfére vietor nemá takú silu ako vietor s rovnakou rýchlosťou na Zemi.

Povrch[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Areografia
Olympus Mons

V 50.60. rokoch 20. storočia sa všeobecne usudzovalo, že marťanské polárne čiapočky sú zložené zo zamrznutej vody. V priebehu výskumu kozmickými sondami sa ale ukázalo, že Mars má atmosféru zloženú hlavne z oxidu uhličitého, len s malou prímesou vody.[19] Na základe tohto zistenia bol vytvorený model atmosféry, z ktorého vyplýva, že teplota bola dosť nízka na to, aby samotný oxid uhličitý na póloch desublimoval a zamrzol. Kvôli striedaniu ročných období na Marse dochádza tiež k významnej zmene atmosférického tlaku počas roka. Na základe týchto pozorovaní a ďalšieho skúmania sa ukázalo, že póly sú pokryté vodným aj suchým ľadom. Prvotné pozorovania boli vysvetlené pomocou tenkej vrstvičky zamrznutej vody nanesenej na ľade z oxidu uhličitého.

Pre vzdialených pozorovateľov má Mars prevažne červenú farbu, presnejšie bledooranžovú alebo ružovú s dvoma bielymi polárnymi ľadovými čiapočkami. Na červených oblastiach sa nachádzajú rozličné svetlé a tmavé plochy so zelenkastou farbou. Tmavé plochy nie sú oceány vody, ako si prví pozorovatelia mysleli, pretože sa na Marse nemôže vyskytovať voda v tekutom stave kvôli nízkemu atmosférickému tlaku (~600 Pa). Tieto zmeny v jasnosti povrchu spôsobuje rozdielny druh povrchového materiálu: červená farba je prach a piesok bohatý na oxid železitý; tmavšie plochy sú spravidla viac kamenisté a skalnaté oblasti. Oxid železitý je hlavnou zložkou minerálu hematit. Práve drobné zrniečka hematitu, ktorých veľkosť nepresahuje 10 mikrometrov, majú červenkastú farbu. Prítomnosť hematitu na povrchu Marsu je považovaná za jeden z vážnych dôkazov toho, že na tejto planéte bola kedysi voda - na Zemi totiž hematit vzniká oxidáciou práve za jej prítomnosti.[20] Prítomnosť tohto minerálu na Marse dokázala sonda Mars Global Surveyor. Náhodné silné vetry, ktoré sa tu vyskytujú, presúvajú prach a menia rozmery a tvar svetlejších a tmavších plôch.

Povrch Marsu je rôznorodý. Južná pologuľa s viac menej hornatou krajinou je pokrytá krátermi, zatiaľ čo na severnej pologuli sú obrovské rovné pláne zaliate lávou. Vo všeobecnosti je povrch Marsu pokrytý skalnatými a kamenistými útvarmi, ktoré sú miestami prekryté prachom a piesočnými dunami.

Na Marse sa nachádza značné množstvo kráterov, korýt, kaňonov a sopiek. Je tu aj najvyššia známa hora slnečnej sústavy, sopka Olympus Mons, ktorá dosahuje výšku 21,2 km nad nulovou výškou povrchu.[21] V rovníkovej oblasti Marsu sa nachádza obrovský kaňon Valles Marineris, dlhý 4 500 km a hlboký 7 km. Objavila ho sonda Mariner 9 mapujúca Mars v rokoch 19711972, podľa ktorej bol kaňon pomenovaný. V oblasti náhornej plošiny Tharsis sa nachádza viacero podobne veľkých sopiek, medzi najvyššie patrí aj Ascraeus Mons s výškou 18 201 m (podľa meraní družice Mars Global Surveyor).[22]

Sonda Mars Express zaznamenala dôkazy o prítomnosti veľkej plochy zmrznutej vody na planine zvanej Elysium. Rozmery ľadového mora sú cca 800 km×900 km, priemerná hĺbka je 45 m. Na Marse sa nachádzajú aj vyschnuté riečne korytá, ktorými tiekla voda pravdepodobne pred niekoľkými miliardami rokov. Nedávno však boli objavené útvary podobné prameňom a od nich sa tiahnuce ryhy, ktorými mohla tiecť voda aj v oveľa bližšej minulosti, možno aj v súčasnosti. Odpoveď na mnohé otázky spojené s týmito ryhami zatiaľ nepoznáme.

Atlas[upraviť | upraviť zdroj]

Globo de Marte - Valles Marineris.gif Globo de Marte - Syrtis Major.gif Globo de Marte - Elysium Planitia.gif

Pomenovanie povrchových útvarov Marsu je zložitejšie než v prípade Merkúra a Venuše, pretože názvoslovie vznikalo viac ako sto rokov už od prvých pozorovaní, ktoré robil taliansky astronóm Giovanni Schiaparelli v roku 1877. Ten v priebehu pozorovaní začal pre útvary používať mená známe z Európy, Ázie a Afriky, ktoré spájal s mytologickými názvami. V práci, ktorú Schiaparelli začal, pokračoval aj Eugene Antoniadi. V oboch prípadoch však boli pomenované len výrazné albedové útvary, ktoré celkom nezodpovedali objektom na povrchu. Po roku 1973 došlo k podrobnému zmapovaniu povrchu Marsu pomocou sondy Mariner 9, čo prinieslo veľkú revíziu názvov a ich úpravu, na ktorej je postavené súčasné názvoslovie.[23]

Poznámky[upraviť | upraviť zdroj]

  • Nulová výška: Pretože Mars nemá oceán a nie je teda žiadna hladina mora, od ktorej by sa mohli merať výšky terénu, bola zavedená nulová výška povrchu. Do 90. rokov 20. storočia bola nulová výška daná atmosférickým tlakom 6,1 mbar a neskôr bola daná stredným gravitačným potenciálom v oblasti rovníka planéty.[24]

Pomerne časté sú aj záporné hodnoty pre miesta pod nulovou výškou.

  • Nultý poludník: Rovník Marsu je daný rotáciou, ale nultý poludník bol určený podobne ako na Zemi: prehlásením, že prechádza určitým konkrétnym bodom. Astronómovia v 19. storočí si za tento bod zvolili s pomerne veľkou nepresnosťou kruhový útvar na povrchu. Až v roku 1972, potom, čo sonda Mariner 9 získala prvé podrobnejšie snímky, bolo určené, že nultý poludník prechádza malým kráterom Airy-0 na planine Sinus Meridiani.
Interaktívna mapa Marsu, kliknite na požadovanú oblasť

Jadro je obklopené kremičitanovým (silikátovým) plášťom, ktorý spôsoboval väčšinu tektonickej a vulkanickej činnosti na planéte. V súčasnosti je táto aktivita minimálna, ale v hlbších častiach plášťa môže plášťová konvekcia stále prebiehať. Najvrchnejšiu oblasť tvorí kôra, ktorá dosahuje priemernú hrúbku okolo 50 km a maximálnu 125 km.

Mesiace[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Fobos (mesiac)
Bližšie informácie v hlavnom článku: Deimos (mesiac)
Fobos (vľavo) a Deimos (vpravo)

Okolo planéty obiehajú dve prirodzené družice – Fobos (Strach) a Deimos (Hrôza). Obidve telesá majú viazanú rotáciu, čo znamená, že ukazujú Marsu stále rovnakú stranu. Veľmi nápadne sa chemickým zložením a tvarom podobajú telesám, ktoré tvoria pás planétok medzi Marsom a Jupiterom, čo viedlo k teórii, že ide o planétky, ktoré Mars svojou gravitáciou zachytil.[25] Pre definitívnu podporu tejto všeobecne prijímanej teórie však bude nutné získať vzorky z povrchu mesiacov.

Obe obežnice objavil Asaph Hall v roku 1877 a pomenoval ich podľa synov boha Marsa. Zaujímavosťou je, že existencia mesiacov bola predpovedaná v knihe Guliverove cesty už v roku 1726,[26] teda v čase, keď neexistoval dostatočne silný ďalekohľad, ktorým by ich bolo možné pozorovať.

Fobos obieha planétu rýchlejšie ako sa ona sama otáča, čo spôsobuje spomaľovanie jeho obehu a znižovanie vzdialenosti od povrchu Marsu. Odhaduje sa, že za 50 miliónov rokov Fobos do planéty narazí.[27] Pri pohľade z povrchu Marsu by Fobos mal uhlový priemer 12′, zatiaľ čo Deimos asi 2′. Uhlový priemer Slnka je asi 21′, takže na Marse nikdy nemôže nastať úplné zatmenie Slnka jedným z jeho mesiacov.

Prirodzené satelity Marsu:

názov priemer (km) hmotnosť (kg) polomer obežnej dráhy (km) obežná doba
Fobos 22,2 (27 × 21,6 × 18,8) 1,08×1016 9 378 7,66 hodín
Deimos 12,6 (10 × 12 × 16) 2×1015 23 400 30,35 hodín

Pozorovania[upraviť | upraviť zdroj]

Každých 16 rokov nastáva najpriaznivejšia opozícia planéty pre pozorovanie a pre vysielanie kozmických sond (tzv. veľká opozícia). Vďaka tomu, že sa Mars približuje alebo vzďaľuje od Zeme, dochádza súčasne k poklesu jeho hviezdnej veľkosti. Tá sa pohybuje medzi 1,6m až −2,8m a zdanlivý priemer od 4″ do 25″.[28] Táto nepravidelnosť má za následok, že v niektorých obdobiach je Mars štvrté najjasnejšie teleso na oblohe po Slnku, Mesiaci a Venuši a inokedy je menej jasný ako Jupiter.

Historické pozorovania[upraviť | upraviť zdroj]

Mapa neexistujúcich kanálov, ako ich zachytil Giovanni Schiaparelli

Keďže je Mars viditeľný aj voľným okom, prvé pozorovania planéty sú známe už z obdobia prvých civilizácií. V prvej polovici 17. storočia astronómovia využili prvé skonštruované ďalekohľady na pozorovania, ktoré im umožnili rozoznať na povrchu planéty tmavé a svetlé plochy, z čoho sa usúdilo, že na Marse sú polárne čiapočky.

V roku 1877 sa prvýkrát v mapách povrchu Marsu objavili nové útvary, tzv. kanály, ktoré však boli len optickým klamom zapríčineným zlými rozlišovacími schopnosťami ďalekohľadu a predstavivosťou talianskeho astronóma Giovanni Schiaparelliho, ktorý ich pozoroval ako prvý. Čiastočne pod vplyvom nesprávneho prekladu talianskeho slova „canale“ znamenajúceho okrem umelého kanálu aj prírodné „koryto“ došlo k mylnej predstave, že útvary sú umelého charakteru. Správa o pozorovaní sa rýchlo rozniesla a následne objav začali potvrdzovať aj z ďalších pozorovacích miest a vytvárať veľké množstvo podrobných máp neexistujúcich kanálov (spolu s nimi začali vznikať teórie o ich umelom pôvode a umierajúcej civilizácii na vysychajúcej planéte). V skutočnosti sú kanály iba optický klam, ktorý vzniká reťazcom tmavých škvŕn. Ich existencia bola po 50 rokoch pozorovaní vyvrátená, ale časť verejnosti ich stále pokladala za existujúce dielo. Až fotografie z kozmických sond jednoznačne túto teóriu vyvrátili.

Pri pozorovaní Marsu zo Zeme ďalekohľadom nie je možné vidieť žiadne významné detaily povrchu okrem polárnych čiapočiek a albedových útvarov a podrobné preskúmanie povrchu planéty vykonali až kozmické sondy, ktoré k nej lietajú od 60. rokov 20. storočia.

Súčasné pozorovania[upraviť | upraviť zdroj]

Mars je vďačným pozorovacím objektom amatérskych astronómov, ktorí pozorujú a niekedy aj zakresľujú zmeny albedových útvarov na jeho povrchu. Najlepšie podmienky na pozorovanie nastávajú počas veľkej opozície, kedy má Mars na oblohe najväčší priemer, pretože sa nachádza v blízkosti perigea. Posledná veľká opozícia Marsu nastala v roku 2003, kedy bola najmenšia vzdialenosť Zeme a Marsu 55,757 milióna kilometrov.[29]

Opozície Marsu a jeho najmenšie vzdialenosti od Zeme v rokoch 2001 - 2020
Dátum najväčšieho
priblíženia k Zemi
Minimálna vzdialenosť
od Zeme v AU
Minimálna vzdialenosť
od Zeme v km
Zdanlivá hviezdna veľkosť Uhlový priemer
na oblohe
Dátum najbližšej opozície
21. jún 2001 0,450 166 6 67 343 965 -2,4 20,79″ 13. jún 2001
27. august 2003 0,372 719 2 55 757 999 -2,9 25,11″ 28. august 2003
30. október 2005 0,464 062 9 69 422 822 -2,3 20,17″ 7. november 2005
18. december 2007 0,589 348 7 88 165 311 -1,6 15,88″ 24. december 2007
27. január 2010 0,663 978 9 99 329 830 -1,3 14,10″ 29. január 2010
5. marec 2012 0,673 676 2 100 780 525 -1,2 13,89″ 3. marec 2012
14. apríl 2014 0,617 558 2 92 385 392 -1,4 15,16″ 8. apríl 2014
22. máj 2016 0,503 213 8 75 279 713 -2,0 18,60″ 30. máj 2016
31. júl 2018 0,384 962 9 57 589 630 -2,8 24,31″ 27. júl 2018
6. október 2020 0,414 915 6 62 070 490 -2,6 22,56″ 13. október 2020

* založené na údajoch z programu Skymap pro 11
** tmavo vyznačené je najväčšie priblíženie planéty k Zemi v sledovanom časovom úseku

Prieskum zblízka[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Prieskum Marsu

Mars bol jedna z prvých planét, ktorú v začiatkoch vesmírneho prieskumu skúmali sondy viacerých štátov. Spočiatku vysielali k červenej planéte sondy Spojené štáty americké a Sovietsky zväz, neskôr sa k nim pridali Európska únia a Japonsko. Za účelom získania dát o geologickom zložení planéty, vlastnostiach jej povrchu, hľadania vody a skúmania klímy sondy spočiatku obiehali okolo planéty alebo dopadali na jej povrch. V neskorších fázach výskumu (v druhej polovici 70. rokov 20. storočia, no najmä od 90. rokov 20. storočia) sa podarili aj úspešné pristátia modulov, v ktorých sa nachádzali diaľkovo ovládané vozidlá, ktoré po povrchu Marsu jazdili niekoľko mesiacov.

Minulosť[upraviť | upraviť zdroj]

Pristávací modul Vikingu 2, fotografia zachytáva najbližšie okolie sondy

Prvá úspešná misia bola americká Mariner 4 vypustená v roku 1964. Nasledoval symbolický úspech dvoch sovietskych sond Mars 2 a Mars 3 vypustených v roku 1971, ktoré pristáli na jeho povrchu, ale kontakt s nimi sa stratil niekoľko sekúnd po dosadnutí. V prieskume pokračoval americký program Viking, ktorý sa skladal z dvoch orbitálnych sond, pričom každá obsahovala aj pristávací modul. Obidva pristávacie moduly úspešne pristáli na povrchu v roku 1976 a po dobu 6 (Viking 1), respektíve 3 (Viking 2) rokov uskutočňovali pozorovania. Pristávacie moduly odvysielali na Zem tiež prvú farebnú fotografiu povrchu Marsu[30] a orbitálne sekcie vyhotovili detailné fotografie povrchu v takom rozlíšení, že niektoré z nich sa používajú ešte aj dnes. V roku 1988 boli vyslané dve sovietske sondy Fobos 1 a 2, ktoré mali študovať Mars a jeho dva mesiace. Kvôli technickej poruche sa Fobos 1 odmlčal už na ceste k Marsu, zatiaľ čo Fobos 2 úspešne vyhotovil fotografie Marsu a jeho mesiaca Fobosu, ale neskôr došlo k poruche, ktorá znemožnila vyslanie dvoch pristávacích modulov na povrch mesiaca.

Po zlyhaní sondy Mars Observer v roku 1992 sa v roku 1996 k Marsu dostala sonda Mars Global Surveyor, ktorá úspešne mapovala povrch planéty až do roku 2006, keď sa po treťom predĺžení misie spojenie so sondou stratilo. Mesiac po vyslaní sondy Surveyor bola vypustená ďalšia sonda Mars Pathfinder, ktorá mala za úlohu vysadiť na povrchu malé pojazdné vozidlo, ktoré by skúmalo okolie pristávacieho modulu v oblasti Ares Vallis. Táto misia priniesla veľké množstvo snímok z povrchu planéty.

Súčasnosť[upraviť | upraviť zdroj]

Skutočný povrch planéty s umelo vygenerovaným vozidlom Opportunity

V roku 2001 NASA úspešne vyslala sondu Mars Odyssey, ktorá je stále na orbite planéty. Pomocou gama spektrometra objavila známky vodíka vo vrchných metroch marťanského regolitu. Predpokladá sa, že tento vodík je viazaný vo vodnom ľade, ktorý sa nachádza pod povrchom.[31]

O dva roky neskôr v roku 2003 sa k planéte vydala európska sonda Mars Express, ktorá sa skladala z dvoch častí, orbitálneho modulu Mars Express a pristávacieho modulu s označením Beagle 2. Táto misia bola úspešná iba čiastočne, keďže pristávací modul z nezistených príčin zlyhal počas pristávacieho manévru a následne vo februári 2004 bol vyhlásený za stratený.[32] Na začiatku roku 2004 bol pomocou planetárneho fourierovho spektrometra pracujúceho s infračerveným žiarením ohlásený nález metánu v atmosfére Marsu. V júni 2006 ESA vydala správu, že objavila polárnu žiaru.[33]

V roku 2003 sa k Marsu vydali dve rovnaké vozidla NASA v rámci projektu Mars Exploration Rover - Spirit (MER-A) a Opportunity (MER-B). Obidve vozidla úspešne pristáli na povrchu v januári 2004 a začali skúmať miesta dopadu, pomocou mechanického ramena očisťovať vzorky a analyzovať ich. Medzi najväčšie objavy patrí objav sadrovca a hematitov a goethitov vo forme, v akej sa vyskytujú len po pôsobení vody, čo je dôkaz, že na Marse kedysi skutočne bola tekutá voda, a to v obidvoch oblastiach, kde sondy pristáli.[34][35] Vozidlá mali hlavnú misiu naplánovanú na 90 dní, ale vďaka silnému vetru a prachovým vírom, ktoré "čistia" solárne panely roverov, sú zariadenia stále funkčné.[36] Opportunity je stále pohyblivá a smeruje ku kráteru Endeavour, Spirit zapadol do sypkého materiálu a je v súčasnosti (marec 2010) už nepohyblivý, ale stále pokračuje vo vedeckej činnosti.[37]

12. augusta 2005 bola vyslaná ďalšia americká sonda Mars Reconnaissance Orbiter, ktorá sa na obežnú dráhu planéty dostala 10. marca 2006. Hlavnou úlohou plánovanej dvojročnej vedeckej misie je zmapovať povrch Marsu a študovať počasie, aby sa mohlo vybrať vhodné miesto pre ďalšie sondy, ktoré by mali na povrchu pristáť. Sonda obsahuje telekomunikačné zariadenie s vyššou prenosovou rýchlosťou ako všetky predchádzajúce sondy dohromady.[38]

25. mája 2008 úspešne pristála na Marse nepohyblivá americká sonda Phoenix, ktorá bola na svoju cestu vyslaná 4. augusta 2007. Miesto jej pristátia sa nachádza v blízkosti severnej polárnej čiapočky. Sonda bola vybavená robotickou rukou, ktorá je schopná odobrať vzorky až do vzdialenosti 2,5 metra a dostať sa až 1 meter pod marťanský povrch. Medzi vybavenie sondy patrila mikroskopická kamera, ktorá je schopná vyhotoviť fotografie predmetov s veľkosťou jednej tisíciny hrúbky ľudského vlasu.[39] Komunikáciu so Zemou jej zabezpečovali sondy na obežnej dráhe Marsu Mars Odyssey a Mars Reconnaissance Orbiter. Plánovaná dĺžka misie bola cca 3 – 4 mesiace, kým nenastala na severnej pologuli zima, čo malo za následok úbytok a nedostatočný prísun svetla pre solárne panely sondy. Vedci neočakávajú, že by Phoenix prežil zimné obdobie, kedy teploty klesajú až na −100 °C. Vo vzorke odobratej 30. júla 2008 bola dokázaná prítomnosť vody, čím bola jednoznačne potvrdená nielen prítomnosť vody na Marse, ale aj hypotéza o polárnom ľade, ktorý sa nachádza v polárnych oblastiach pod niekoľkocentimetrovou vrstvou prachu.[40] Sonda prestala vysielať údaje 2. novembra 2008, kedy slabnúce slnečné svetlo v polárnej oblasti Marsu už nedostačovalo na zabezpečenie funkcie jej systémov. 10. novembra bola misia Phoenixu vyhlásená za ukončenú.[41]

Budúcnosť[upraviť | upraviť zdroj]

Na výskume Marsu sa možno raz budú podieľať aj automatické lietajúce sondy.

V roku 2011 by sa mala z Cape Canaveral na cestu vydať sonda Mars Science Laboratory, ktorá by mala dosahovať rýchlosť až 90 m/h (Phoenix dosahoval rýchlosť 18 m/h). Ide o väčšiu a vylepšenú verziu súčasných vozidiel misie Mars Exploration Rovers. Okrem iného by malo laboratórium hľadať na Marse organické zlúčeniny, či stopy života. Začiatok výskumu je naplánovaný na leto 2010.[42]

Na rok 2009 sa plánuje aj rusko-čínska misia Fobos-Grunt, ktorá si kladie za cieľ dopraviť späť na Zem vzorky z mesiaca Fobos. Na rok 2012 plánuje ESA svoj prvý rover pod názvom ExoMars; mal by byť schopný kopať až dva metre pod povrch, kde by hľadal organické molekuly.[43][44]

V roku 2004 vyhlásil americký prezident George W. Bush dlhodobý plán Vision for Space Exploration, podľa ktorého sa USA pripravujú vyslať na Mars pilotovanú loď a na jeho povrch vysadiť človeka. Podobné plány má i ESA, ktorá by chcela dostať človeka na Mars medzi rokmi 2030 až 2035.[45] Okrem NASA a ESA má svoje ambície aj Rusko.[46]

Možnosť života[upraviť | upraviť zdroj]

Bližšie informácie v hlavnom článku: Život na Marse
Detail pohľadu na výbrus meteoritu AHL84001, kde sa podľa niektorých vedcov nachádzajú pozostatky po jednoduchom živote

Súčasné poznanie histórie Marsu nasvedčuje, že sa po jeho vzniku na povrchu nachádzala hustá atmosféra a kvapalná voda, ktorá možno tvorila aj celoplanetárny oceán pokrývajúci prevažnú časť severnej pologule.[47] Podľa súčasnej teórie o vzniku života tým bola splnená základná podmienka, ktorá mohla vytvoriť obývateľnú zónu na povrchu a umožniť tak vznik primitívneho života.[48] Na druhej strane proti vzniku života hovorí fakt, že priaznivé podmienky boli iba dočasné a v súčasnosti sa Mars nachádza mimo obývateľnej zóny Slnka, čo má za následok zmrznutie vody. Predpokladá sa, že by pre prípadný vznik života museli byť k dispozícii iné energetické zdroje (napr. vulkanizmus), ako energia Slnka.

Slabá magnetosféra, extrémne tenká atmosféra, veľké výkyvy teplôt, ukončenie vulkanickej činnosti a bombardovanie povrchu meteoritmi nedávajú v súčasnosti príliš veľa nádejí, že by život, ak sa vyvinul, mohol prežiť do dnešných dní, aj keď vedci na Zemi sú neustále prekvapovaní podmienkami, za ktorých život môže prežívať (radioaktivita[49], život bez svetla,[50] bez dýchateľného kyslíka[51] atď.)

Pre potvrdenie alebo vyvrátenie teórie o živote na Marse zatiaľ chýbajú jasné dôkazy. Existujú síce niektoré náznaky, ktoré nasvedčujú tomu, že na Marse život skutočne bol, ako napríklad štruktúry pripomínajúce pozostatky činnosti organizmov v meteorite ALH84001, ktoré však rovnako dobre môžu byť anorganického pôvodu.[52] Na povrchu planéty niekoľko sond (napr. Viking) uskutočnilo experimenty, ktoré mali objaviť dôkazy života, ale tieto pokusy nepriniesli žiadny dôkaz potvrdzujúci život na planéte teraz ani v minulosti.

Pre nebezpečenstvo zavlečenia pozemského života na Mars sú sondy určené na pristátie na Marse starostlivo sterilizované[53] (aj keď na začiatku výskumu neboli všetky sondy sterilizované príliš dôkladne[54]). Na jasnú odpoveď, či na planéte skutočne život vznikol alebo či ide iba o vedeckú fikciu, je potrebné počkať, dokiaľ nebude dôkladne ľuďmi preštudovaná väčšia časť povrchu planéty.

Obývateľnosť[upraviť | upraviť zdroj]

Kolonizácia Marsu[upraviť | upraviť zdroj]

Ľudská kolonizácia Marsu je cieľom mnohých špekulácií aj serióznych štúdií, ktoré sa objavujú po celý čas výskumu tejto planéty. Povrchové podmienky, relatívna blízkosť planéty a ľahká dostupnosť vody robia z Marsu planétu s pravdepodobne najvyššími šancami na osídlenie v slnečnej sústave okrem Zeme. Pokiaľ bude ľudská expanzia pokračovať aj na iných kozmických telesách, Mars bude pravdepodobne jej ďalším cieľom.

Mars vyžaduje menej energie na jednotku hmotnosti (Delta V) k jeho dosiahnutiu zo Zeme ako ktorákoľvek iná planéta s výnimkou Venuše. S využitím Hohmannovej obežnej dráhy trvá let k Marsu 6 – 7 mesiacov, počas ktorých bude posádka vystavená stavu beztiaže. Existuje aj možnosť rýchlejšieho letu, ale pri ňom sa spotrebuje viac paliva.

Trvalým cieľom kolonizácie planéty by malo byť vytvorenie stálej ľudskej základne a postupné osídľovanie povrchu planéty. Otvorenou otázkou zostáva, či ľudstvo, pokiaľ sa pokúsi osídliť Mars, bude odsúdené na Marse žiť v uzavretých základniach, kde sa bude umelo udržovať atmosféra, alebo či sa podarí premeniť povrch planéty na obývateľný pomocou terraformovania.

Terraformovanie[upraviť | upraviť zdroj]

Umelecká predstava ako by mohol vyzerať terraformovaný Mars

Terraformovanie Marsu je hypotetický súbor procesov, ktoré by mali v konečnom dôsledku umožniť človeku žiť na povrchu Marsu bez nutnosti používať ochranné prostriedky pred okolitým prostredím. Jeho výsledkom by tak mal byť vznik planéty podobnej Zemi.[55] Teoretický proces, ktorý by mohol zmeniť celú planétu, by prebiehal minimálne desiatky či stovky rokov[56] od najjednoduchších organizmov cez rastliny až po prvé živočíchy.

Keďže je Mars rozdielny a má menšiu gravitáciu, podmienky nebudú nikdy celkom zhodné s tými pozemskými. V súčasnosti ide skôr o fikciu, keďže neexistuje žiadna dostupná technológia, ktorá by túto premenu zvládla, aj keď sa už občas objavujú nápady, ako povrch Marsu premeniť.[57]

Mars v kultúre[upraviť | upraviť zdroj]

Meno planéty[upraviť | upraviť zdroj]

Mars je pomenovaný po rímskom bohu vojny a krviprelievania. Stretávame sa s ním v rímskej mytológii (pozri Mars). V Babylónskej astronómii bola planéta pomenovaná po Nergalovi, božstvu ohňa, vojny a ničenia, pravdepodobne vďaka jeho červenej farbe.[58] Keď Gréci spojili Nergala so svojím bohom vojny Areom, pomenovali planétu Areos aster, alebo „Areova hviezda“. Potom bol Ares tiež prepojený s rímskym Marsom, a tak sa do latinčiny dostala planéta ako „Stella Martis“, čiže „Martova hviezda“, resp. „Mars“. Gréci označovali planétu aj ako Pyroeis, čo znamená približne horiaci. V hinduistickej mytológii je Mars známy ako Mangala alebo v sanskrite tiež ako Angaraka podľa boha vojny, ktorý vlastní znaky kozorožca a škorpióna a učí okultné vedy. Starí Egypťania túto planétu nazývali „Horus Červený“. Hebrejci mu zase hovorili Ma'adim „tá, ktorá sa začervenáva“; tu je tiež pôvod mena jedného z najväčších kaňonov Marsu – Ma'adim Vallis. Mars je známy aj ako al-Mirrikh v arabčine aj v perzštine, v turečtine sa mu hovorí Merih. Etymológia al-Mirrikh je zatiaľ neobjasnená. Starí Peržania hovorili Marsu Bahram podľa zoroastrijského boha osudu. Starí Turci ho nazývali Sakit. Číňania, Japonci, Kórejci a Vietnamci planétu označovali za ohnivú hviezdu, menom založeným na starom čínskom mýtickom cykle o Piatich elementoch.

Mars symbol.svg

Symbolom Marsu je malé koliesko so šípkou smerujúcou nahor a von. Je to štylizované znázornenie štítu a kopije, používaných rímskym bohom Marsom, ktorý bol nielen bohom vojny, ale aj patrónom vojakov. Symbol sa používa aj v biológii pre označenie mužského pohlavia a v alchýmii na označenie prvku železa, o ktorom sa predpokladalo, že bol ovládaný Marsom, vďaka charakteristicky červenej farbe oxidu železitého.[59] ♂ označuje znak Unicode na pozícii U+2642.

Socha boha Marta pred Villa Adriana v Tivoli, Taliansko

Význam v astrológii[upraviť | upraviť zdroj]

Za vlády Chaldejcov v južnej Mezopotámii došlo k významnému rozvojú astrológie a k zavedeniu systému siedmich "planét" (k vládnucemu páru Slnko, Mesiac pridali ešte Merkúr, Venušu, Mars, Jupiter a Saturn), ktorým boli taktiež priradené príslušné božské princípy.[60] V prípade Marsu to bol babylónsky boh moru Nergal, ku ktorému boli neskôr asociovaní egyptský Hor, hindský Mangal, grécky Ares a rímsky boh vojny Mars.[61] Siedmim tradičným astrologickým planétam zodpovedá sedem dní v týždni,[61] kde je Mars spojený s utorkom, z ktorého vychádza aj pomenovanie pre tento deň v románskych jazykoch (napr. v španielčine martes, v taliančine martedì a vo francúzštine mardi).[62] Podľa Pytagora 7 planetárnych sfér okolo Zeme svojim otáčaním vyludzuje tzv. hudbu sfér – staršiu hudobnú stupnicu. Preto boli stupnice sedemtónové.[61]

Mars vo zverokruhu vládne I. a VIII. nebeskému domu, t. j. denný dom je pre neho Baran a nočný Škorpión, povýšenie zažíva v Kozorožcovi, pád v Rakovi a zničenie vo Váhach a v Býkovi.[60] Problémy tomuto systému priniesol objav trpasličej planéty Pluto, v ktorej prospech niektorí moderní astrológovia odoberajú Marsu znamenie Škorpióna.[60][61][63] Konzervatívni astrológovia naproti tomu radšej ponechávajú Pluto bez domicilu.[60]

Pôvodne predstavoval božský princíp Marsu (muža) harmonický protiklad k Venuši (žene) a tomu zodpovedal aj jeho vtedajší symbol ♁ (v súčasnosti ide o symbol Zeme), neskorším zdôraznením agresívnych prvkov však došlo k deformácii kríža do uhlopriečneho šípu, t. j. k prechodu do dnešného symbolu ♂.[60]

Astrologická povaha Marsu vychádza z mytológie a je spájaná so sebaistotou a sebapresadzovaním, agresivitou, sexualitou, energiou, silou, ambíciami a výbušnosťou, teda historicky chápanými samčími vlastnosťami.[64] Tieto vlastnosti zároveň svedčia o duchu ovládanom nižšími potenciami (hmotou),[65] čo sa odrážalo aj v predtým zmienenom pôvodnom symbole ♁ (kríži hmoty nad kruhom ducha).[66]

Podľa astrológov by sa mal vplyv Marsu uplatňovať v povolaniach ako sú vojaci, chirurgovia, či športovci.[66] Francúzsky psychológ a štatistik Michel Gauquelin vykonal v 60. rokoch 20. storočia veľkú štúdiu nazvanú „Mars Effect“, ktorá dávala významnú koreláciu medzi dátumom narodenia športových šampiónov a dominantným postavením Marsu.[60] Test na vzorke šampiónov zostavenej inak však priniesol negatívny výsledok.[67]

V súčasnej astrológii Mars vládne prvému a ôsmemu domu[68][69]; tradične však Mars vládol tretiemu a desiatemu domu.[70][71]

Inteligentní Marťania[upraviť | upraviť zdroj]

Obľúbená predstava, že je Mars obývaný inteligentnými Marťanmi, sa traduje od 19. storočia, kedy sa naplno rozbehlo mapovanie marsovských "kanálov", ktoré propagoval predovšetkým taliansky astronóm Giovanni Schiaparelli. V spojení s knihou od Percivala Lowella o postupne umierajúcej planéte, ktorá vysychá a chladne s prastarou civilizáciou, ktorá sa snaží vytvoriť sieť zavlažovacích kanálov, sa rýchlo začala šíriť myšlienka, že na Marse existuje inteligentný život.[72]

Pozorovanie neexistujúcich kanálov na Marse sa šírilo medzi vtedajšími astronómami ako Marsovská horúčka,[73] ktorá prinášala čoraz podrobnejšie a presnejšie mapy zavlažovacích kanálov. V roku 1899 počas prieskumu atmosférického rádiového šumu zachytil vynálezca Nikola Tesla opakujúci sa signál, o ktorom neskôr vyhlásil, že by mohlo ísť o rádiovú komunikáciu z inej planéty, pravdepodobne Marsu.[74] Teslova teória sa čoskoro dočkala podpory Lorda Kelvina, ktorý navštívil Spojené štáty americké v roku 1902 a pri tejto príležitosti mal prehlásiť, že Tesla zachytil Marťanské rádiové vysielanie určené pre Spojené štáty.[75] V roku 1901 vyšiel článok v New York Times, že riaditeľ Harvard College Observatory Edward Charles Pickering obdržal telegram z Lowell Observatory v Arizone ohľadom možného pokusu zachytenej komunikácie Marsu so Zemou.

Ako však ukázali kozmické sondy v 20. storočí, na Marse žiaden inteligentný život v súčasnosti nie je.

Sci-fi[upraviť | upraviť zdroj]

Mimozemšťania útočiaci na Zem vo Wellsovej knihe Vojna svetov

Mars bol a je častým predmetom sci-fi príbehov, ktoré ho v histórii popisovali ako živý svet inteligentných tvorov a neskôr ako vyprahnutú planétu, ktorú sa človek snaží podmaniť. Jeho magická červená farba a chybná predstava o rozsiahlych kanáloch na jeho povrchu inšpirovala mnohých spisovateľov, aby svoje príbehy zasadili do tohto sveta. Azda najznámejšou knihou z ranej histórie sci-fi žánru je Wellsova kniha Vojna svetov z roku 1898, ktorá opisuje inváziu Marťanov z umierajúcej planéty na Zem a následnú vojnu s ľudstvom. Kniha sa stala hitom a dočkala sa aj rádiového vysielania 30. októbra 1938. Vysielanie bolo natoľko presvedčivé, že mnohí poslucháči, ktorí si zapli rádio neskôr, sa domnievali, že ide o skutočnú udalosť, čo spôsobilo paniku a chaos.[76]

Ďalším slávnym dielom je Marťanská kronika od amerického spisovateľa Raya Bradburyho, ktorá opisuje skazu marťanskej civilizácie nešťastnou náhodou spôsobenou ľuďmi a neschopnosť ľudí sa z tejto chyby poučiť. V 60. rokoch 20. storočia o Marse písali Edgar Rice Burroughs a Robert A. Heinlein.

Mars sa v literatúre vyskytoval už dávnejšie pred vznikom modernej sci-fi. Napríklad spisovateľ Jonathan Swift vo svojej knihe Gulliverove cesty v devätnástej kapitole popisuje dva mesiace Marsu, približne 150 rokov pred tým, ako boli skutočne objavené astronómom Asaphom Hallom.[77]

Pred vyslaním sond Mariner a Viking, ktoré priniesli prvé podrobné snímky skutočného povrchu Marsu bez známok života, sa väčšina kníh zaoberala témou inteligentných Marťanov a ich vzťahov s ľuďmi. Keď sa však ukázalo, že život na Marse nie je a že možno ani nikdy nebol, témy kníh o Marse sa zmenili. Začali sa zaoberať blízkou ľudskou budúcnosťou, v ktorej sa ľudstvo pokúsi na Marse pristáť, vytvoriť na ňom trvalú základňu a následne ho osídliť. Pravdepodobne najznámejšia a najviac prepracovaná sága o kolonizácii a boji za slobodu Marsu je Trilógia o Marse od Kima Stanleyho Robinsona.

Snímky z Marsu však nevyvrátili všetky pochybnosti a niektoré paradoxne záujem sci-fi autorov ešte podporili. Najznámejším útvarom zo snímok sond Viking sa stala tzv. Tvár na Marse – hora pripomínajúca ľudskú tvár obrátenú do vesmíru (neskoršie podrobné mapovanie ukázalo, že ide o prírodný útvar vzniknutý zvetrávaním[78]). Tento a podobné výjavy na Marse spôsobili, že Mars je pre spisovateľov vedeckofantastickej literatúry aj po zmapovaní povrchu stále zaujímavý.

Ďalším obľúbeným námetom sa stal boj marťanskej kolónie za nezávislosť od Zeme, ktorý sa objavuje v dielach Grega Beara alebo už spomínaného Kima Stanleyho Robinsona. Na rovnakom základe stavia film Total Recall a televízny seriál Babylon 5.

Legendy[upraviť | upraviť zdroj]

  • Už niekoľko rokov koluje formou e-mailu hoax, že 27. augusta nedefinovaného roku „budú Zem a Mars tak blízko seba, ako ešte nikdy v dejinách ľudstva... Bližšie k našej planéte bude Mars až v r. 2287... v túto noc bude Mars vidno na oblohe najjasnejšie a bude najväčší... Pri pozorovaní voľným okom sa bude zdať taký veľký, ako Mesiac pri splne... Okolo 27. augusta ho budeme môcť pozorovať už po západe Slnka až do 00:30... od začiatku augusta sa bude objavovať na východnej oblohe...“ Všetky informácie uvedené v tejto správe sú nepravdivé.[79] Nijaká planéta nemôže nikdy na oblohe dosiahnuť uhlovú veľkosť, ani jasnosť Mesiaca v splne. Takisto všetky uvedené údaje sú buď úplne nereálne, alebo sa nevyskytli 27. augusta uplynulých niekoľko rokov.
  • Prieskum sondami Viking priniesol aj snímky spomínanej oblasti Cydonia Mensae, na ktorých sa objavil zvláštny útvar pripomínajúci ľudskú tvár obrátenú k nebi.[80] Tento skalný útvar sa neskôr začal označovať ako „Tvár na Marse“[81] a považoval sa za umelé dielo mimozemskej civilizácie. Kvalitnejšie snímky ale ukázali, že išlo iba o hru svetla a tieňov na obyčajnom erodovanom skalnom masíve.[81]

Literatúra[upraviť | upraviť zdroj]

Tento článok je čiastočný alebo úplný preklad článku Mars na českej Wikipédii.

  • Holger Heuseler (1999). Mars: Pathfinder, Sojourner a dobývání rudé planety. Mladá fronta. ISBN 80-204-0794-4.
  • M. H. Carr, H. Michael (2006). The surface of Mars, Cambridge. Cambridge University Press. ISBN 0-521-87201-4.
  • Róbert Čeman, Eduard Pittich (2002). Vesmír - 1 Sluneční soustava. Mapa Slovakia, strany: 192-227. ISBN ISBN 80-8067-072-2.

Referencie[upraviť | upraviť zdroj]

  1. a b Encyclopedia of science; Mars, atmosphere. prístup: 2007-08-19.
  2. SHEEHAN, William. The Planet Mars: A History of Observation & Discovery. Tucson : University of Arizona Press, 1996. ISBN 978-0-8165-1640-7. Kapitola Motions of Mars. (po anglicky)
  3. Mars Exploration Rover Mission. prístup: 2007-08-19.
  4. MAJUMDER, Sanjoy. India launches spacecraft to Mars [online]. BBC News, 2012-00-0, [cit. 2014-01-26]. Dostupné online. (anglicky)
  5. Mars Meteorites. prístup: 2007-08-19.
  6. Golombek, Matthew P. - McSween, Harry J.: Mars: Landing Site Geology, Mineralogy and Geochemistry, p. 343. In: McFadden, Lucy-Ann - Weismann, Paul R. - Johnson, Torrence V.: Encyclopedia of Solar System. 2. ed. San Diego - London - Amsterdam - Burlington : Elsevier. 2007. ISBN 978-0-12-088589-3.
  7. How old is Mars? (in anglicky). Passport to Knowledge. Retrieved on 2007-09-02.
  8. L. T. Elkins-Tanton et al. (2005). "Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn". Earth Planet. Sci. Lett. 236: 1–12. DOI:10.1016/j.epsl.2005.04.044.
  9. a b V magnetických pruhoch je uchovaná história Marsu. prístup: 2007-08-30.
  10. SPACE.com: Mars Odyssey Shows Intense, But Managable Radiation Risk for Astronauts. prístup: 2007-08-30.
  11. MELLON, Michael T; FELDMAN, William C; PRETTYMAN, Thomas H. The presence and stability of ground ice in the southern hemisphere of Mars. Icarus, jún 2003, roč. 169, čís. 2, s. 324–340. DOI10.1016/j.icarus.2003.10.022. (po anglicky)
  12. a b ČEMAN, Róbert. Vesmír 1 Slnečná sústava. Bratislava : Mapa Slovakia, 2002. ISBN 978-80-8067-072-6. S. 194.
  13. SEDS, Mars. archivované na [http://seds.lpl.arizona.edu/nineplanets/nineplanets/mars.html originál z 1996-12-25 prístup: 2007-08-19.
  14. European Astrobiology Magazine Extreme, Titan. prístup: 2007-08-19.
  15. Solarview, Martian Clouds. prístup: 2007-08-19.
  16. ESA Life in Space, Rare high-altitude clouds found on Mars. prístup: 2007-08-19.
  17. Space.com, A global dust storm of massive proportions, unlike any seen since the early 1970s, now rages across Mars.. prístup: 2007-08-19.
  18. Science@NASA, The Devils of Mars. prístup: 2007-08-19.
  19. Elkins-Tanton, Linda T.: Mars. New York : Chelsea House. 2006, p. 76
  20. McFadden, Lucy-Ann - Weismann, Paul R. - Johnson, Torrence V.: Encyclopedia of Solar System. 2. ed. San Diego - London - Amsterdam - Burlington : Elsevier. 2007, p. 339-340
  21. McFadden, Lucy-Ann - Weismann, Paul R. - Johnson, Torrence V.: Encyclopedia of Solar System. 2. ed. San Diego - London - Amsterdam - Burlington : Elsevier. 2007, s. 321
  22. Elkins-Tanton, Linda T.: Mars. New York : Chelsea House. 2006, p. 97
  23. Grygar, Dušek, Pokorný (2000). Náš vesmír : Fotografický atlas. Praha: Aventinum, strany: 106. ISBN 80-7151-179-X.
  24. 31st Annual Meeting of the DPS – D. E. Smith & M. T. Zuber: The Relationship of the MOLA Topography of Mars to the Mean Atmospheric Pressure. prístup: 2007-10-09.
  25. Mars Express, Close Inspection for Phobos. prístup: 2007-08-19.
  26. Astronomický server pedagogickej fakulty Západočeskej univerzity v Plzni, História Marsu. prístup: 2007-08-19.
  27. Solar System Exploration, Mars: Moons: Phobos. prístup: 2007-08-19.
  28. Róbert Čeman, Eduard Pittich (2002). Vesmír 1: Slnečná sústava. Slovenská Grafia, Bratislava, strana: 193. ISBN 80-8067-071-4.
  29. Jakub Rozehnal: Velká opozice Marsu se blíží. prístup: 2007-08-30.
  30. Journey Trough the Galaxy, Other Mars Missions. prístup: 2007-08-19.
  31. Odyssey Spacecraft Generates New Mars Mysteries. prístup: 2007-08-19.
  32. Europe's Beagle 2 Mars Probe Stays Ominously Silent. prístup: 2007-08-19.
  33. Discovery of an aurora on Mars. prístup: 2007-08-19.
  34. NASA – NASA Mars Rover Finds Mineral Vein Deposited by Water. Nasa.gov (2011-12-07). Retrieved on 2012-08-14.
  35. Rover Finds "Bulletproof" Evidence of Water on Early Mars. News.nationalgeographic.com (2011-12-08). Retrieved on 2012-08-14.
  36. Looking for Signs of Past Water on Mars. prístup: 2007-08-19.
  37. HAVLÍČEK, Antonín. 26. január 2010, [cit. 2010-01-28]. spaceprobes.kosmo.cz Dostupné online. (česky)
  38. Past Present and Future Missions to Mars. prístup: 2009-01-04.
  39. Phoenix: The Search for Water. prístup: 2007-08-19.
  40. http://www.lib.cas.cz/space.40/2007/I034A.HTM
  41. http://www.lib.cas.cz/space.40/INDEX1.HTM
  42. NASA, Mars Science Laboratory. prístup: 2007-09-15.
  43. ExoMars. prístup: 2007-08-19.
  44. European Mars launch pushed back. prístup: 2007-08-19.
  45. Liftoff for Aurora: Europe’s first steps to Mars, the Moon and beyond. prístup: 2007-08-19.
  46. Russia preparing for human journey to Mars. prístup: 2007-08-22.
  47. Mars Ocean Hypothesis Hits the Shore. prístup: 2007-08-19.
  48. Mars, Water and Life. prístup: 2007-08-19.
  49. Deinococcus radiodurans. prístup: 2007-08-19.
  50. BEATTY, J. Thomas; OVERMANN, Jörg; LINCE, Michael T, et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, jún 2005, roč. 102, čís. 26, s. 9306–9310. DOI10.1073/pnas.0503674102. PMID 15967984. PMC: 1166624. (po anglicky)
  51. Pozemské metabolismy. prístup: 2007-08-19.
  52. What is ALH 84001?. prístup: 2007-08-19.
  53. Řeky na Marsu vyschly už před miliardami let. prístup: 2007-08-19.
  54. Marcel Grün. Těžký úkol sterilizace kosmických sond. prístup: 2007-08-19.
  55. Melting Mars To Create A New Earth.
  56. Martyn J. Fogg. TERRAFORMING MARS: A REVIEW OF RESEARCH. prístup: 2007-08-19.
  57. Terraforming Mars, The Noble Experiment?. prístup: 2007-08-19.
  58. William Sheeham (1997). Pohyby Marsu. prístup: 2006-06-13.
  59. Symboly planet (NASA solar system exploration). prístup: 2006-06-13.
  60. a b c d e f Peter Berling (2004). Dějiny astrologie: Živly, symboly a základ astrologie od počátků do současnosti. Slovart (Praha). ISBN 80-7209-584-6.
  61. a b c d Clare Gibsonová (2002). Astrologická encyklopedie. Metafora (Praha), strany: 18-27. ISBN 80-86518-38-8.
  62. Origin Of Day Names. prístup: 2007-10-06.
  63. PULS - Zvěrokruh a barvy. prístup: 2007-10-07.
  64. www.myastrologybook.com - Mars in astrology. prístup: 2007-10-06.
  65. Pierre de Lasenic (2000). Astrologie (Kosmologie). Praha: Vodnář, strany: 21. ISBN 80-86226-14-X.
  66. a b Geoffrey Cornelius, Maggie Hyde, Chris Webster (1996). Astrologie pro začátečníky. Brno: Ando. ISBN 80-902032-1-3.
  67. Roland Seidel. Co je astrologie. prístup: 2007-10-17.
  68. Error on call to template:cite web: Parameters url and title must be specified.
  69. www.myastrologybook.com - Mars in the eighth house. prístup: 2007-10-06.
  70. www.myastrologybook.com - Mars in the third house. prístup: 2007-10-06.
  71. www.myastrologybook.com - Mars in the tenth house. prístup: 2007-10-06.
  72. Percivel Lowell's Canals.
  73. Fergus, Charles (May 2004). "Mars Fever". Research/Penn State 24 (2).. prístup: 2007-08-25.
  74. Tesla, Nikola (February 19, 1901). Talking with the Planets. Collier's Weekly.. prístup: 2007-08-25.
  75. Margaret Cheney (1981). Tesla, man out of time. Prentice-Hall, Englewood Cliffs, New Jersey, strana 162. ISBN 978-0-13-906859-1.
  76. Radio's War of the Worlds Broadcast (1938). archivované na [http://members.aol.com/jeff1070/wotw.html originál z 1999-02-22 prístup: 2007-08-31.
  77. Swift, Jonathan and the moons of Mars. prístup: 2007-08-31.
  78. Jiřina Hrušová: Tvář na Marsu – definitivní konec legendy (snad). prístup: 2007-08-31.
  79. Mars,alebo aj červená planéta – hoax desaťročia?. prístup: 26. november 2008.
  80. TVÁŘ NA MARSU. prístup: 2007-08-19.
  81. a b IAN.cz : Cydonia – tvář na Marsu. prístup: 2007-08-19.

Pozri aj[upraviť | upraviť zdroj]

Iné projekty[upraviť | upraviť zdroj]

Externé odkazy[upraviť | upraviť zdroj]