Aktinoid

z Wikipédie, slobodnej encyklopédie
Prejsť na: navigácia, hľadanie
Urán, najbežnejšie sa vyskytujúci aktinoid na Zemi. Na snímke je obohatený urán, používaný ako palivo pri šiepnej reakcii.

Aktinoid (značka An[1]) je pomenovanie pre člena skupiny chemických prvkov, nachádzajúceho sa v 7. perióde periodickej tabuľky prvkov za aktíniom s protónovým číslom 90 až 103, teda prvky tóriumlawrencium.[1][2][3][4] Pre podobnosť chemických vlastností však býva do skupiny zaraďované aj samotné aktínium.[1][2][3][4]

V periodickej tabuľke sa umiestňujú v osobitnej sekcii, rovnako ako lantanoidy nachádzajúce sa o periódu vyššie. Prvý prvok aktinoidového radu je tórium a aktínium spoločne so skandiom, ytriom a lantánom je zaradené medzi prechodné prvky do tretej skupiny.[2] Používajú aj varianty usporiadania tak, že prvým prvkom skupiny je samotné aktínium a naopak lawrencium je umiestnené do bloku d v rámci vyššie uvedenej skupiny prvkov vzánych zemín.[2] Vyčlenenie, taktiež aj samotné pomenovanie skupiny bolo zavedené v 40. rokoch 20. storočia na základe publikácií amerického chemika Glenna T. Seaborga.[5] Dovtedy sa známe aktinoidy (tórium, protaktínium a urán) umiestňovali v periodickej tabuľke pod hafnium, tantal a volfrám, vzhľadom na podobnosť oxidačných stupňov a zlúčenín.[6]

Všetky aktinoidy sú prirodzene rádioaktívne.[7] V prírode sa vo väčších (priemyslene ťažiteľných) množstvách vyskytujú len prvky urán a tórium, ktorých izotopy 238U, 235U a 232Th majú polčasy rozpadu rádovo miliardy rokov.[7] V stopových množstvách sa na Zemi vyskytujú aj aktínium a protaktínium, ale len ako produkty rozpadu uránu/tória, nakoľko žiaden z ich izotopov nemá tak dlhý polčas rozpadu by mohli existovať od vzniku Zeme. Ostatné prvky skupiny boli pripravené umelo.[7]

Hlavná oblasť využitia aktinoidov súvisí s ich rádioaktivitou, izotopy uránu 233U a 235U, ako aj izotop plutónia 239Pu sa používajú ako palivo/zdroj neutrónov pri riadenej reťazovej štiepnej reakcii v jadrových elektrárňach. Rovnako sú však používané aj ako zdroj neutrónov reťazovej reakcie jadrových zbraní. Izotop 238Pu sa používa ako zdroj termoelektrickej energie pre medziplanetárne sondy, rovnako aj ako zdroj energie pre kardiostimulátory.[3]

Zoznam aktinoidov (spolu s aktíniom)
89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr

História[upraviť | upraviť zdroj]

Martin H. Klaproth - objaviteľ prvého aktinoidu - uránu.

Pred rokom 1940 boli známe len prvky aktínium, tórium, protaktínium a urán. Najstarší objavený aktinoid je urán, ako nový prvok ho objavil, aj keď čistý urán nezískal, nemecký chemik M. H. Klaproth v roku 1789 v smolinci. Smolinec nechal rozpustiť v kyseline dusičnej a roztok následne zneutralizoval hydroxidom sodným a získal žltú zlúčeninu (pravdepodobne diuránan sodný). Túto zlúčeninu redukoval dreveným uhlím a ako produkt dostal čiernu látku o ktorej sa mylne domnieval že pripravil nový prvok. Pomenoval ho podľa tiež nedávno objavenej planéty Urán.[3] Čistý urán sa podarilo vyrobiť až o 60 rokov neskôr francúzskemu chemikovi Eugène-Melchiorovi Péligotovi rovnakou metódou ako bolo izolované tórium.[3]

Z neznámeho minerálu pochádzajúceho z Nórska izoloval v 1827 Nemec Friedrich Wöhler oxid toričitý.[8] To, že ide o oxid nového prvku, zistil o rok neskôr švédsky chemik Jöns Jakob Berzelius, ktorý nadviazal na práce Wöhlera, oxid detailnejšie popísal a pomenoval ho, vzhľadom k pôvodu minerálu, oxid tória podľa jedného z hlavných vikingských bohov Thorovi. Čisté tórium Berzelius neskôr vyrobil redukciou chloridu toričitého draslíkom.

Aktínium bolo objavené v roku 1899 francúzskym chemikom André-Louisom Debiernom, ktorý spolupracoval s manželmi Marie a Pierre Curie a nový prvok objavil v zvyškoch smolinca po extrakcii rádia, kde sa v stopových množstvách vyskytuje ako člen rozpadového radu[9]. Nezávisle na Debierneovi aktínium objavil aj Nemec Friedrich Oskar Giesel v roku 1902. Pomenovanie je odvodené od gréckeho slova actinos – lúč vzhľadom na rádioaktivitu prvku.[2]

Posledný aktinoid vyskytujúci sa v prírode protaktínium odseparoval ako silne rádioaktívny materiál z uránu v roku 1900 Willam Crokes, no nebol schopný ho presnejšie popísať a nazval ho jednoducho urán-X[9]. Až v 1913 Kazimierz Fajans a Oswald Göhring urán-X bližšie popísali a pomenovali ho brevium (z lat. brevis – krátky) vzhľadom na krátku dobu života izotopu 234Pa (niekoľko hodín)[9]. Izotop s dlhším polčasom rozpadu 231Pa bol izolovaný v Nemecku Ottom Hahnom a Lisou Meitnerovou, súbežne aj pracovnou skupinou v Spojenom kráľovstve vedenou Frederickom Soddym a následne došlo k premenovaniu prvku na protaktínium (z g. protos – predchodca aktínia).[3]

Syntéza nových prvkov[upraviť | upraviť zdroj]

Enrico Fermi - taliansky fyzik, ktorý predpovedal možnosť syntézy prvkov s protónovým číslom 93 a vyšším.

Začiatkom 20. storočia vládlo v chemickej obci presvedčenie, že periodická tabuľka končí prvkom 92 – uránom. Objav neutrónu Jamesom Chadwickom v roku 1932, prvá syntéza prvkov bombardovaním iných prvkov alfa časticami Frédéricom Joliot-Curiem a Irène Joliotovou-Curieovou v roku 1934 a publikácie talianskeho fyzika Enrica Fermiho z prvej polovice 30. rokov, že pri ostreľovaní atómov ťažších prvkov neutrónmi dochádza k ich záchytu, následnej emisii beta žiarenia spojenej so zvýšením protónového čísla prvku, viedli k pokusom s ostreľovaním uránu 238U so snahou o syntézu prvku 93.[4] Snahy však dlho neprinášali vytúžený efekt, až v roku 1940 sa američanom Edwinovi McMillanovi a Philipovi Abelsonovi z univerzity v Berkeley v Kalifornii podarila syntéza nového prvku podľa reakcie:[10]

{}^{238}_{92}\textrm{U} + {}^{1}_{0}\textrm{n} \xrightarrow {}^{239}_{92}\textrm{U} \xrightarrow[23.5 min]{\beta^-} {}^{239}_{93}\textrm{Np} \xrightarrow[2.3 d]{\beta^-} {}^{239}_{94}\textrm{Pu} \xrightarrow[2.4\cdot 10^4 rokov]{\alpha}

Prvok bol pomenovaný ako neptúnium, podľa planéty Neptún (analogicky tak ako nasleduje v Slnečnej sústave planéta Neptún za Uránom, tak nasleduje prvok neptúnium za uránom v periodickej tabuľke). V roku 1952 boli stopové množstvá neptúnia identifikované aj v rudách uránu, kde vzniká ako produkt vyššie uvedenej reakcie.[3]

Glenn T. Seaborg z laboratória na univerzite v Berkeley, v ktorom boli syntetizované prvky 94 až 102

Syntéza ďalších prvkov nedala na seba dlho čakať. Už McMillan s Abelsonom pozorovali, že 239Np emisiou ß- žiarenia prechádza na prvok s protónovým číslom 94 s hmotnosťou 239, ale neboli schopní ho bližšie popísať. Koncom roka 1940 však skupina s Glennom Seaborgom a McMillanom pripravila prvok 94 bombardovaním uránu deuterónmi.

{}^{238}_{92}\textrm{U} + {}^{2}_{1}\textrm{H} \xrightarrow {}^{238}_{93}\textrm{Np} + 2{}^{1}_{0}\textrm{n} \xrightarrow[2.1 d]{\beta^-} {}^{238}_{94}\textrm{Pu}

Prvok bol pomenovaný plutónium Pu, podľa planéty Pluto (opäť analogicky podľa poradia planét v Slnečnej sústave, kde Pluto nasleduje za Neptúnom). V roku 1941 bolo synteticky pripravených už 0,5 μg plutónia a v roku 1948 boli namerané stopové množstvá 239Pu v prírode.[3] Popis chemických vlastností plutónia zároveň potvrdil koncepciu rozpracovanú Seaborgom že aktinoidy sú jedna skupina, nakoľko plutónium sa chemicky podobalo skôr uránu ako osmiu, pod ktoré by bolo v tradičnej koncepcii zaradené.

Syntéza prvkov nachádzajúcich sa za plutóniom pokračovala rýchlo a v laboratóriách univerzity v Berkeley boli v rokoch 1944 až 1955 ohlásené objavy prvkov 95 až 100, teda amerícium, curium, berkélium, kalifornium, einsteinium a fermium bombardovaním ľahších aktinoidov deutériom, resp. iónmi hélia. Prvky einsteinium a fermium však boli prvýkrát detegované ako produkty termonukleárnej reakcie pri teste prvej vodíkovej bomby v roku 1952 a až neskôr boli pripravené syntézou v cyklotróne v laboratóriu.[3]

S narastajúcim protónovým číslom bola syntéza prvkov ťažšia, hlavným problémom bolo dostatočné množstvo prvku ktorý by mohol byť bombardovaný héliom. Už prvok 101, neskôr pomenovaný mendelevium na počesť ruského chemika Mendelejeva, tvorcu periodickej tabuľky, bol prvýkrát syntetizovaný v počte len 17 atómov. Namiesto hélia sa tak v urýchľovačoch začali na bombardovanie používať ťažšie ióny. Objav prvku 102 nobelium bol ohlásený medzinárodnou skupinou v pracujúcou v medzinárodnom Nobelovom inštitúte v Štokholme a aj keď neskôr sa ukázalo že išlo o omyl a syntéza prvku bola priznaná skupine vedenej Georgijom Nikolajevičom Fljerovom v Dubne (Sovietsky zväz, terajšie Rusko)[3], názov bol ponechaný. Posledný aktinoid lawrencium bol syntetizovaný paralelne bombardovaním uránu iónmi bóru v Berkeley a bombardovaním amerícia iónmi kyslíka v Dubne.[3]

Chronologický prehľad objavu/syntézy aktinoidov
Prvok Značka Číslo Pomenovanie podľa Rok objavu Objaviteľ/Objavitelia Syntéza Množstvo
urán U 92 podľa planéty Urán 1789 M. H. Klaproth vyskytuje sa v prírode kg
tórium Th 90 podľa vikingského boha Thora 1828 J. J. Berzelius vyskytuje sa v prírode kg
aktínium Ac 89 z gréčtiny actinos – lúč 1899 A. Debierne vyskytuje sa v prírode kg
protaktínium Pa 91 z gréčtiny protos – prvý 1913 K. Fajans, O. H. Göhring, O. Hahn, L. Meitnerová, F. Soddy, J. Cranston vyskytuje sa v prírode kg
neptúnium Np 93 podľa planéty Neptún 1940 E. McMillan, P. Abelson bombardovaním 238U neutrónmi kg
plutónium Pu 94 podľa planéty Pluto 1940 G. T. Seaborg, E. McMillan, J. Kennedy, A.C. Wahl bombardovaním 238U deutériom kg
amerícium Am 95 podľa Ameriky 1944 G. T. Seaborg, R. A. James, L. O. Morgan bombardovaním 239Pu neutrónmi kg
curium Cm 96 podľa manželov Curieovcov 1944 G. T. Seaborg, R. A. James, L. O. Morgan, A. Ghiorso bombardovaním 239Pu iónmi hélia g
berkélium Bk 97 podľa Berkeley v Kalifornii 1949 S. G. Thompson, A. Ghiorso, G. T. Seaborg bombardovaním 241Am iónmi hélia mg
kalifornium Cf 98 podľa Kalifornie 1950 S. G. Thompson, K. Street, A. Ghiorso, G. T. Seaborg bombardovaním 242Cm iónmi hélia μg
einsteinum Es 99 podľa Alberta Einsteina 1952 pracovníci ústavu v Berkeley termonukleárna explózia μg
fermium Fm 100 podľa Enrica Fermiho 1953 pracovníci ústavu v Berkeley termonukleárna explózia μg
mendelevium Md 101 podľa Dmitrija Mendelejeva 1955 A. Ghiorso, B. G. Harvey, G. R. Choppin, S. G. Thompson, G. T. Seaborg bombardovaním 253Es iónmi hélia atómy
nobélium No 102 podľa Alfréda Nobela 1957 – 1963 E. D. Donec, V. A. Šegolev, V. A. Jermakov bombardovaním 243Am iónmi dusíka atómy
lawrencium Lr 103 podľa Ernesta Lawrenceho 1961 – 1965 A. Ghiorso, T. Sikkeland, A. E. Larsh, R. M. Latimer, pracovníci ústavu v Dubne bombardovaním 249 – 252Cf iónmi bóru
bombardovaním 243Am iónmi kyslíka
atómy

Izotopy[upraviť | upraviť zdroj]

V súčasnosti je známych približne 250 izotopov aktinoidov[11], všetky z nich sú rádioaktívne. Najdlhší polčas rozpadu232Th – 14 miliárd rokov, čo je viac ako existencia Zeme, takže sa vyskytuje v prírode. Okrem tória sa v prírode nachádzajú aj dva izotopy uránu: 238U s polčasom rozpadu 4,7 miliary rokov a 234 (245 tisíc rokov). K dlho žijúcim izotopom patria aj 236Np, 237Np, 239Pu, 242Pu, 244Pu, 247Cm a 248Cm.[11]

Vlastnosti[upraviť | upraviť zdroj]

Fyzikálne vlastnosti[upraviť | upraviť zdroj]

Fázový diagram vybraných aktinoidov.

Aktinoidy sú striebroleské kovy s vysokou hustotou, pomerne mäkké (najtvrdším aktinoidom je tórium), s dobrou tepelnou a elektrickou vodivosťou. Pri aktinoidoch sa časté alotropické modifikácie, s výnimkou kalifornia sa vyskytujú vo viacerých kryštalických formách, napr. plutónium samotné v rozmedzí izbovej teploty až teploty topenia (641 °C) prechádza cez sedem rozličných kryštálových sústav.[2] Takáto vysoká variabilita odzrkadľuje nepravidelnosti v kovových polomeroch, ktoré sa zasa odvíjajú od variability počtu elektrónov umiestnených na hladinách vodivostných pásov v kovovej väzbe.[4]

Charakteristickou vlastnosťou aktinoidov je nestabilita atómových jadier a z nej vyplývajúca rádioaktivita. Pri rozpade najčastejšie emitujú častice alfa[1] (kladne nabité jadrá hélia), no jadrá aktinoidov sa záchytom neutrónu spontánne rozpadajú na ľahšie jadrá za emisie ďalších voľných neutrónov, pričom tieto neutróny spôsobujú rozpad ďalších jadier a tak dochádza k reťazovej štiepnej reakcii.[1] Prirodzená rádioaktivita tória a uránu je zdrojom vlastného tepla Zeme.[4]

Rádioaktivita má vplyv aj na kryštálovú štruktúru aktinoidov.[2] Napr. 239Pu sa rozpadá na častice alfa a izotop 235U s energiami 5 MeV, a 86 keV, ktoré sa pohybujú na vzdialenosť 10 μm, resp. 12 nm. Ako sa tieto častice pohybujú v kovovej mriežke, vytesňujú atómy plutónia z pozícií, čím sa vytvárajú početné frenkelove defekty. Každý rozpad má za následok vytvorenie približne 2 600 frenkelových dier a za 20 rokov si každý atóm plutónia vymení pozíciu.[2] Rovnako aj v pri analýze štruktúry kryštálových mriežok röntgenovým žiarením dochádza k postupnému klesaniu intenzity difrakcie lúčov s časom. Tento jav je dobre pozorovateľný pri kryštáloch amerícia.[2]

Vybrané fyzikálno-chemické vlastnosti aktinoidov [4]
Prvok Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr
Protónové číslo 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
Atómová hmotnosť [227] 232,038 [231] 238,029 [237] [244] [243] [247] [247] [251] [252] [257] [258] [259] [262]
Elektrónová konfigurácia 6d17s2 6d27s2 5f26d17s2
alebo
5f16d27s2
5f36d17s2 5f46d17s2
alebo
5f57s2
5f67s2 5f77s2 5f76d17s2 5f97s2
alebo
5f86d17s2
5f107s2 5f117s2 5f127s2 5f137s2 5f147s2 5f146d17s2
Oxidačné stupne 3 3, 4 3, 4, 5 3, 4, 5, 6 3, 4, 5, 6, 7 3, 4, 5, 6, 7 2, 3, 4 3, 4 3, 4 2, 3 2, 3 2, 3 2, 3 2, 3 3
Kovový polomer (nm) 0,203 0,180 0,162 0,153 0,150 0,162 0,173 0,174 0,170 0,186 0,186
Iónový polomer (nm)
- An4+
- An3+
 

0,126
 
0,114
 
0,104
0,118
 
0,103
0,118
 
0,101
0,116
 
0,100
0,115
 
0,099
0,114
 
0,099
0,112
 
0,097
0,110
 
0,096
0,109
 
0,085
0,098
 
0,084
0,091
 
0,084
0,090
 
0,084
0,095
 
0,083
0,088
Teplota (°C)
- topenia
- varu   

1050
3300

1750
4800

1572
4400

1130
3800

640
3900

640
3230

1176
2610

1340

1050

900

860

1530

830

830

1630
Hustota (g/cm3) 10,07 11,78 15,37 19,06 20,25 18,4 11,7 7,0 14,78 ??? ??? ??? ??? ??? ???
Štandarndý el. potenciál (V)
- E° (An4+/An0)
- E° (An3+/An0)

 – 
−2,13

−1,83
 – 

−1,47
 – 

−1,38
−1,66

−1,30
−1,79

−1,25
−2,00

−0,90
−2,07

−0,75
−2,06

−0,55
−1,96

−0,59
−1,97

−0,36
−1,98

−0,29
−1,96

 – 
−1,74

 – 
−1,20

-
−2,10
Najlhšie žijúci izotop 227 232 231 238 237 244 243 247 247 251 252 257 258 259 262

Chemické vlastnosti[upraviť | upraviť zdroj]

Iónové polomery aktinoidov

Elektrónová konfigurácia aktinoidov v základnom stave je tvorená uzavretou elektrónou vrstvou prechádzajúceho vzácneho plynu radónu a na valenčnej sfére čiastočne obsadeným orbitálom 5f a dvoma, resp. štyrmi elektrónmi v orbitáloch 6d a/alebo 7s.[3] Pre aktinoidy je charakteristické zapĺňanie orbitálu 5f, analogicky ako lantanoidy obsadzujú orbitál 4f. Na rozdiel od lantanoidov však aktinoidy vykazujú oveľa väčšiu variabilitu oxidačných stupňov, pozorovateľné je to hlavne pri ľahších aktinoidoch (z prvej polovice skupiny), kedy sú bežné oxidačné čísla +4 až +7. Variabilita je zapríčinená nízkymi rozdielmi energetických hladín medzi orbitálom 5f a orbitálmi 6d a 7s. Malé rozdiely spôsobujú, že elektróny f-orbitálov nie sú dostatočne odtienené 6d a 7s orbitálmi a tak majú väčšiu tendenciu zapájať sa do väzby ako analogické 4f orbitály lantanoidov.[3] Ľahké aktinoidy sa tak podobajú skôr na d-prvky ako na lantanoidy.[4]. Od amerícia smerom k ťažším aktinoidom sa začína stabilizovať oxidačný stupeň +3, tam je podobnosť sa lantanoidmi väčšia.

Charakteristickou črtou aktinoidov je tiež postupné zmenšovanie iónových polomerov s narastajúcim atómovým číslom. Jav sa nazýva aktinoidová kontrakcia (podobne ako lantanoidová kontrakcia pri lantanoidoch). Pribúdajúce elektróny totiž obsadzujú vnútorný orbitál f, kde sú priťahované jadrom, takže nedochádza k zväčšovaniu elektrónového obalu.[12]

Zlúčeniny[upraviť | upraviť zdroj]

Aktinoidy ochotne reagujú s väčšinou polokovov a nekovov za vzniku príslušných binárnych zlúčenín.[13] Na vzduchu sa pokrývajú nekompaktnou vrstvou oxidov. S kyselinami reagujú pomalšie, často po reakcii ostáva nerozpustný zvyšok – napr. reakciou tória s kys. chlorovodíkovou vzniká čierna zrazenina približného zloženia HThO (OH).[4] Koncentrovaná kyselina dusičná pasivuje povrch uránu, tória a protaktínia, takže nedochádza k ich rozpúšťaniu. Prídavok fluoridových iónov naopak vedie k dokonalému rozpusteniu, čo sa v praxi aj dosť často využíva.[4]

Rádioaktivita ovplyvňuje aj oxidačné stupne vo vodnom roztoku. Napr. 239Pu sa v kyslom roztoku vyskytuje v oxidačných stupňoch Pu+4, resp. PuO2+2. Emisia alfa častice má však za následok rádiolýzu vody za vzniku radikálov •H a •OH a peroxidu vodíka, ktoré následne redukujú plutónium na stupeň +3.[2]

Oxidy[upraviť | upraviť zdroj]

Oxidy aktinoidov [4]
Prvok +3 +4 +5   +6
Th - ThO2 - - -
Pa - PaO2 Pa2O5 -
U - UO2 U2O5 U3O8 UO3
Np - NpO2 Np2O5 - -
Pu Pu2O3 PuO2 - - -
Am Am2O3 AmO2 - - -
Cm Cm2O3 CmO2 - - -
Bk Bk2O3 BkO2 - - -
Cf Cf2O3 CfO2 - - -
Es Es2O3 - - - -

Oxidy aktinoidov sú jedny z najpreskúmanejších a priemyselne najpoužívanejších zlúčenín[2] a pre viaceré prvky sú zároveň najstabilnejšie zlúčeniny. Ich zloženie je často nestechiometrické, s viacerými alotropickými modifikáciami a fázovými medzistavmi. Viaceré sú ťažko taviteľné, oxid toričitý s teplotou topenia 3 191 °C je najťažšie taviteľný oxid vôbec.[3] Z An2O3 sú známe oxidy od aktínia až po einsteinium. Oxidy plutónia, amerícia a berkélia oxidujú vzdušným kyslíkom na AnO2, zatiaľ čo oxid curitý, kalifornitý a einsteinitý sú voči oxidácii stále.

V oxidačnom stupni +4 sú známe oxidy od tória po kalifornium, pokiaľ daný prvok vytvára aj oxid +3, často sa vyskytujú ako podvojné oxidy s pomerom O/An 1,5 až 2,0.

Oxidy vo vyšších oxidačných stupňoch tvoria protaktínium (maximálne +5), urán (+6) a neptúnium (+5). Pri uráne je známych niekoľko zlúčenín so vzorcami U4O9, U3O7, U3O8 a UO3, taktiež akvakomplexy UO3·xH2O, peroxo komplexy UO4·xH2O, ako aj uranylové anióny [U2O7]2- a [U4O13]2-. Oxid uraničitý (v prírode sa vyskytuje ako minerál uraninit – hlavná ruda uránu) sa používa ako palivo v jadrových reaktoroch. Jeho hustota je 10,95 g.cm−3, pri „horení“ v reaktore však oxiduje na oxid U3O8, ktorý má hustotu len 8,4 g.cm−3 čo môže spôsobovať deštrukciu palivového článku.[2]

Halogenidy[upraviť | upraviť zdroj]

Halogenidy sú ďalšia veľká skupina dobre preskúmaných zlúčenín aktinoidov.[4] Všeobecný vzorec je AnX2 až AnX6. V najvyššom oxidačnom stupni +6 sú známe len fluoridy uránu, neptúnia a plutónia, ako aj chlorid uránový. Fluorid uránový sa používa pri oddeľovaní izotpov uránu. Všetky halogenidy so šesťmocnými aktinoidmi sú silné oxidačné činidlá a taktiež reagujú aj so stopami vzdušnej vlhkosti podľa rovnice:

AnX6 + 2H2O → AnO2X2 + 4HX

Najpreskúmanejšie halogenidy sú v oxidačnom stupni +4[3]. Fluoridy sú známe od aktínia až po kalifornium. Kryštalizujú v monoklinickej sústave, sú nerozpustné vo vode a pripravujú sa zahrievaním oxidov s fluorovodíkom:

AnO2 + 4HF → AnF4 + 2H2O

Ostatné štormocné halohenidy sa pripravujú reakciou oxidov s chloridom uhličitým, zmesou Cl2/SOCl2, alebo reakciou príslušného halogénu s kovom.

Trojmocné fluoridy sú štruktúrne podobné fluoridom lantanoidov. Sú známe od aktínia po berkélium, majú pomerne vysoké teploty topenia, sú nerozpustné vo vode a na vzduchu pomaly oxidujú. Trojmocné chloridy sú hygroskopické, pripravujú sa reakciou príslušných hydridov s chlorovodíkom, prípadne reakciou chloridu uhličitého s trojmocnými hydroxidmi.

Z dvojmocných halogenidov sú známe len halogenidy amerícia a kalifornia.

Iné binárne zlúčeniny[upraviť | upraviť zdroj]

Aktinoidy sa za zvýšenej teploty zlučujú s vodíkom za vzniku prevažne čiernych zlúčenín všeobecného zloženia AnH2 pre prvky Ac, Th a Np – Bk a AnH3 pre Pa až Bk. Tórium taktiež vytvára hydrid so zložením Th4H15, ktorý má supravodivé vlastnosti. Produkty sú tepelne nestabilné a taktiež sa rozkladajú so vzdušnou vlhkosťou. Tepelná nestabilita hydridov sa využíva na separáciu aktinoidov.[3]

Nitridy aktinoidov sú známe od aktínia až po curium, vo všeobecnosti sú to pevné látky s vysokými teplotami topenia, ktoré sa pripravujú priamou syntézou z jednotlivých zložiek, prípadne reakciou hydridov príslušných prvkov s amoniakom pri vysokých teplotách. Pri tóriu sú známe dva nitridy zloženia ThN a Th3N4, pri uráne až tri UN, U2N3 a U4N7, pri neptúniu a plutóniu jeden NpN a PuN. Nitridy tória, neptúnia a plutónia sú plánované ako palivo pre reaktory hlbinných ponoriek.[2] Rovnako sú plánované ako palivo aj karbidy a boridy uránu/plutónia.

Soli kyslíkatých kyselín[upraviť | upraviť zdroj]

Výskyt v prírode[upraviť | upraviť zdroj]

Izotopy aktinoidov 232Th, 235U, 238U a asi aj 244Pu sa mohli zachovať od vzniku slnečnej sústavy, lebo majú veľký polčas rozpadu. Tieto izotopy a stopy produktov ich rádioaktívneho rozpadu 231Pa, 237Np a 239Pu sa nachádzajú v prírode.

Uránu sa v prírode nachádza viac ako cínu. Uránové rudy smolinec U3O8 a karnotit K2(UO2)2(VO4)2.3HO sú v prírode dosť rozptýlené, a preto sa musia pri výrobe uránu a jeho zlúčenín najprv skoncentrovať fyzikálnymi postupmi. Nasledujú chemické postupy, ktoré sa zakladajú na rozklade smolinca kyselinou sírovou a na jeho oxidácii oxidom manganičitým na sulfátokomplexy UO2+2.

Referencie[upraviť | upraviť zdroj]

  1. a b c d e COX, Tony. BIOS Instant Notes in Inorganic Chemistry 2nd Edition. 2. vyd. [s.l.] : Routledge, UK. 282 s. ISBN 978-1-85996-289-3. Kapitola ACTINIUM AND THE ACTINIDES, s. 245-246. (angličtina)
  2. a b c d e f g h i j k l m Encyclopedia of Inorganic Chemistry, 10 volume set, 2nd Edition. Ed. Bruce R. King. 2. vyd. [s.l.] : Wiley, 2005-september. 10 zv. (6696 s.) ISBN 978-0-470-86078-6. Kapitola Actinides: Inorganic & Coordination Chemistry, s. 1-31. (angličtina)
  3. a b c d e f g h i j k l m n o p Encyclopedia of Physical Science an Technology. Ed. Robert A. Meyers. 3. vyd. [s.l.] : Elsevier, 2001. 18 zv. (15453 s.) ISBN 978-0-12-227410-7. Kapitola Actinide Elements, s. 211-236. (angličtina)
  4. a b c d e f g h i j k GREENWOOD, Norman; EARNSHAW, Alan. Chemistry of the Elements, Second Edition. 2. vyd. Oxford : Butterworth-Heinemann, 1997. 1347 s. ISBN 008-0-37941-9. Kapitola The Actinide and Transactinide Elements, s. 1253-1284. (angličtina)
  5. Glenn T. Seaborg; LOVELAND, Walter D.. The Elements Beyond Uranium. 1. vyd. New York : Wiley, 1990-november. 368 s. ISBN 978-0-471-89062-1. (angličtina)
  6. GAŽO, Ján a kol.. Všeobecná a anorganická chémia. 3. vyd. Bratislava : ALFA SNTL, 1981. 808 s. Kapitola Aktinoidy, s. 573-580.
  7. a b c MUCK, Alexander. Základy struktúrní anorganické chemie. 1. vyd. Praha : Academia, 2006. 508 s. ISBN 80-200-1326-1. Kapitola Aktinoidy, s. 417-421. (čeština)
  8. GOLUB, A. M.. Общая и неорганическая химия. 2. vyd. [s.l.] : [s.n.], 1971. (ruština)
  9. a b c EMSLEY, John. Nature's Building Blocks: An A-Z Guide to the Elements. 2. vyd. Oxford : Oxford University Press, 2001. 560 s. ISBN 0198503407. Kapitola Actinium. (angličtina)
  10. Edwin McMillan; Philip Abelson. Radioactive Element 93. Physical Review, 1940, roč. 57, čís. 12, s. 1185–1186.
  11. a b G. AUDI, O. BERSILLON, J. BLACHOT, A.H. WAPSTRA. The Nubase evaluation of nuclear and decay properties. Physical Review, 2003, roč. 624, s. 3-128. Dostupné online.
  12. ŠIMA, Jozef. Anorganická chémia. [s.l.] : STU Bratislava, 2005. 464 s. Kapitola Lantanoidy a aktinoidy, s. 403 – 404.
  13. Synthesis of Lanthanide and Actinide Compounds (Topics in F-Element Chemistry). Ed. G. Meyer, L.R. Morss. 1. vyd. [s.l.] : Springer, 1990-december. 31 zv. (388 s.) ISBN 978-0792310181. (angličtina)

Iné projekty[upraviť | upraviť zdroj]